基于干扰观测器的一类组合航天器高阶全驱抗干扰控制
收稿日期: 2023-04-20
修回日期: 2023-05-15
录用日期: 2023-07-20
网络出版日期: 2023-08-07
基金资助
国家自然科学基金(62188101)
High⁃order fully actuated anti⁃disturbance control for a type of combined spacecraft based on disturbance observer
Received date: 2023-04-20
Revised date: 2023-05-15
Accepted date: 2023-07-20
Online published: 2023-08-07
Supported by
National Natural Science Foundation of China(62188101)
研究了一类组合航天器的高阶全驱(HOFA)抗干扰控制,其干扰包括具有未知参数的输入端干扰和常值外部干扰。首先,引入一种一般化的离散时间高阶全驱后向差分模型,并对其中的2种干扰分别进行了干扰估计。其次,基于HOFA系统框架,设计了基于干扰观测器的复合控制器,不仅可以有效抑制干扰,而且能够得到一个可任意配置特征结构的闭环系统。然后,利用参数化方法,分别建立了观测器增益矩阵和反馈控制矩阵的完全参数化形式。最后,所提方法被应用于一类实际组合航天器模拟器,仿真和试验结果验证了所提方法的有效性。
关键词: 组合航天器; 离散时间高阶全驱后向差分模型; 干扰观测器; 抗干扰控制; 参数化设计
崔凯鑫 , 段广仁 . 基于干扰观测器的一类组合航天器高阶全驱抗干扰控制[J]. 航空学报, 2024 , 45(1) : 628892 -628892 . DOI: 10.7527/S1000-6893.2024.28892
This paper investigates the High-Order Fully Actuated (HOFA) anti-disturbance control for a type of actual combined spacecraft, in which disturbances include input disturbances with unknown parameters and constant external disturbances. First, a generalized discrete-time step backward HOFA model is introduced, and the disturbances are estimated for each of the two disturbances. Then, based on the HOFA system framework, a composite controller based on the disturbance observer is designed, which can not only effectively suppress disturbances, but also obtain a closed-loop system with an arbitrarily assignable eigenstructure. Secondly, the complete parameterized forms of the observer gain matrix and the feedback control matrix are established by using the parameterization method. Finally, the proposed method is applied to a type of actual combined spacecraft simulator, and the simulation and experimental results fully demonstrate the effectiveness of the proposed method.
1 | 王益平, 赵育善, 师鹏, 等. 捕获目标后组合体航天器抗干扰自适应控制[J]. 中国空间科学技术, 2015, 35(6): 20-28. |
WANG Y P, ZHAO Y S, SHI P, et al. Adaptive control for stabilizing the coupling system with disturbance after capturing spacecraft[J]. Chinese Space Science and Technology, 2015, 35(6): 20-28 (in Chinese). | |
2 | HUANG P F, WANG D K, MENG Z J, et al. Adaptive postcapture backstepping control for tumbling tethered space robot–target combination[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1): 150-156. |
3 | HUANG P F, LU Y B, WANG M, et al. Postcapture attitude takeover control of a partially failed spacecraft with parametric uncertainties[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(2): 919-930. |
4 | 马广富, 高寒, 吕跃勇, 等. 组合体航天器有限时间超螺旋反步姿态控制[J]. 宇航学报, 2017, 38(11): 1168-1176. |
MA G F, GAO H, LV Y Y, et al. Super-twisting observer based finite-time backstepping attitude control for a combined spacecraft[J]. Journal of Astronautics, 2017, 38(11): 1168-1176 (in Chinese). | |
5 | 吴佳奇, 康国华, 华寅淼, 等. 组合体航天器智能协同姿态控制研究[J]. 中国空间科学技术, 2020, 40(4): 44-53. |
WU J Q, KANG G H, HUA Y M, et al. Research on intelligent cooperative attitude control of assembled spacecraft[J]. Chinese Space Science and Technology, 2020, 40(4): 44-53 (in Chinese). | |
6 | 刘闯, 岳晓奎. 空间非合作航天器抓捕后姿态抗干扰控制[J]. 航空学报, 2021, 42(11): 524849. |
LIU C, YUE X K. Anti-disturbance attitude control for post-capture non-cooperative spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(11): 524849 (in Chinese). | |
7 | CHEN W H, BALLANCE D J, GAWTHROP P J, et al. A nonlinear disturbance observer for robotic manipulators[J]. IEEE Transactions on Industrial Electronics, 2000, 47(4): 932-938. |
8 | CHEN W H. Disturbance observer based control for nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4): 706-710. |
9 | CHEN M S, CHEN C C. Robust nonlinear observer for lipschitz nonlinear systems subject to disturbances[J]. IEEE Transactions on Automatic Control, 2007, 52(12): 2365-2369. |
10 | LIU M, ZHANG L X, SHI P, et al. Robust control of stochastic systems against bounded disturbances with application to flight control[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1504-1515. |
11 | DING Z T. Consensus disturbance rejection with disturbance observers[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5829-5837. |
12 | AGHABABA M P. Sliding-mode control composite with disturbance observer for tracking control of mismatched uncertain nDoF nonlinear systems[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 482-490. |
13 | ZHENG M H, LYU X M, LIANG X, et al. A generalized design method for learning-based disturbance observer[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26(1): 45-54. |
14 | DUAN G R. High-order fully actuated system approaches: part II. generalized strict-feedback systems[J]. International Journal of Systems Science, 2021, 52(3): 437-454. |
15 | 段广仁. 高阶系统方法: Ⅱ.能控性与全驱性[J]. 自动化学报, 2020, 46(8): 1571-1581. |
DUAN G R. High-order system approaches: Ⅱ. controllability and full-actuation[J]. Acta Automatica Sinica, 2020, 46(8): 1571-1581 (in Chinese). | |
16 | DUAN G R. High-order fully actuated system approaches: part III. robust control and high-order backstepping[J]. International Journal of Systems Science, 2021, 52(5): 952-971. |
17 | DUAN G R. High-order fully actuated system approaches: part IV. adaptive control and high-order backstepping[J]. International Journal of Systems Science, 2021, 52(5): 972-989. |
18 | DUAN G R. High-order fully actuated system approaches: part V. robust adaptive control[J]. International Journal of Systems Science, 2021, 52(10): 2129-2143. |
19 | ZHANG D W, LIU G P, CAO L. Proportional integral predictive control of high-order fully actuated networked multiagent systems with communication delays[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(2): 801-812. |
20 | DUAN G R. High-order fully-actuated system approaches: part VI. disturbance attenuation and decoupling[J]. International Journal of Systems Science, 2021, 52(10): 2161-2181. |
21 | DUAN G R. High-order fully actuated system approaches: part X.basics of discrete-time systems[J]. International Journal of Systems Science, 2022, 53(4): 810-832. |
22 | DUAN G R. Generalized sylvester equations: unified parametric solutions[M]. Calabasas :CRC Press, 2015. |
23 | DUAN G R. Simple algorithm for robust pole assignment in linear output feedback[J]. IEE Proceedings- Control Theory and Applications, 1992, 139(5): 465-469. |
24 | 段广仁. 飞行器控制的伪线性系统方法—第二部分: 方法与展望[J]. 宇航学报, 2020, 41(7): 839-849. |
DUAN G R. Quasi-linear system approaches for flight vehicle control—part 2: methods and prospects[J]. Journal of Astronautics, 2020, 41(7): 839-849 (in Chinese). |
/
〈 |
|
〉 |