流体力学与飞行力学

强旋翼尾迹涡干扰对直升机空速测量的影响

  • 刘永华 ,
  • 徐国华 ,
  • 史勇杰 ,
  • 杜振宇 ,
  • 张慧鑫 ,
  • 胡志远
展开
  • 1.南京航空航天大学 直升机动力学全国重点实验室,南京 210016
    2.航空工业太原航空仪表有限公司,太原 030006

收稿日期: 2023-09-06

  修回日期: 2023-10-18

  录用日期: 2024-01-15

  网络出版日期: 2024-01-24

基金资助

国家自然科学基金(11972190)

Effects of strong rotor wake vortex interference on helicopter airspeed measurement

  • Yonghua LIU ,
  • Guohua XU ,
  • Yongjie SHI ,
  • Zhenyu DU ,
  • Huixin ZHANG ,
  • Zhiyuan HU
Expand
  • 1.National Key Laboratory of Helicopter Aeromechanics,Nanjing University of Aeronautics and Astronautics,Nanjing  210016,China
    2.AVIC Taiyuan Aero-Instruments Co. ,Ltd. ,Taiyuan  030006,China

Received date: 2023-09-06

  Revised date: 2023-10-18

  Accepted date: 2024-01-15

  Online published: 2024-01-24

Supported by

National Natural Science Foundation of China(11972190)

摘要

准确的空速测量对于直升机飞行安全至关重要。本文建立了基于非定常动量源理论的旋翼/机身气动干扰流场数值模拟方法,研究了旋翼尾迹涡干扰对直升机空速测量的影响。以某参考直升机为例,分析了不同旋翼拉力下,空速管布置区在全速度范围内空速值的变化特性。由于旋翼桨叶运动、机身阻滞等影响,不同位置空速管的静压相位和峰值存在差异,其中相位差异受到桨叶激励时刻影响、峰值差异受桨盘载荷与机身阻滞影响。研究也发现并解释了在特定速度段存在的由于旋翼桨尖涡通过空速管区域引起的“空速迟滞”现象。空速管的空速变化可分为下洗流主导区、迟滞区、来流主导区3个区域,对于常规构型直升机迟滞区仅在中低速度段。进一步的参数研究表明:空速管的位置越靠近机身前部、旋翼拉力越小,迟滞区的速度区间越靠前;当靠近机头时空速管并无明显的“迟滞”。最后,本文从气动干扰的角度给出了空速管的布置建议。

本文引用格式

刘永华 , 徐国华 , 史勇杰 , 杜振宇 , 张慧鑫 , 胡志远 . 强旋翼尾迹涡干扰对直升机空速测量的影响[J]. 航空学报, 2024 , 45(14) : 129536 -129536 . DOI: 10.7527/S1000-6893.2024.29536

Abstract

Accurate airspeed measurement is crucial for helicopter flight safety. This article establishes a numerical simulation method for the rotor/fuselage aerodynamic interference flow field based on the unsteady momentum source theory and investigates the influence of rotor wake vortex interference on helicopter airspeed measurement. Using a reference helicopter as an example, we analyze the variation characteristics of airspeed values within the entire speed range for different rotor thrusts and airspeed probe locations. Due to factors such as rotor blade motion and fuselage blockage, there are differences in the static pressure phase and peak values at different airspeed probe locations. The phase difference is influenced by the impact of rotor blades, while the peak value difference is affected by the rotor disc load and fuselage blockage. The study also identifies and explains the “airspeed hysteresis” phenomenon caused by rotor tip vortices passing through the airspeed probe area within specific speed ranges. The variation of airspeed in the airspeed probe area can be divided into three regions: the downwash-dominated region, the hysteresis region, and the incoming-flow-dominated region. For conventional configuration helicopters, the hysteresis region occurs only at medium to low speeds. Further analysis of parameter effects suggests that the closer the airspeed probe is to the front of the fuselage and the smaller the rotor thrust, the further forward the speed range of the hysteresis region. When the airspeed probe is positioned near the nose, no significant hysteresis appears. Finally, the article provides recommendations for the placement of airspeed probes from the perspective of aerodynamical interference.

参考文献

1 熊亮, 刘义明, 黄巧平. 武装直升机大气数据传感器技术研究进展[J]. 传感器与微系统201534(2): 5-8.
  XIONG L, LIU Y M, HUANG Q P. Research progress in air data sensor technology for attack helicopter[J]. Transducer and Microsystem Technologies201534(2): 5-8 (in Chinese).
2 KNIGHT C G. Low airspeed measuring devices for helicopter usage monitoring systems: DSTO-TN-0495 [R]. Melbourne: DSTO Platforms Sciences Laboratory, 2003.
3 COYLE S. The art and science of flying helicopters[M]. Ames: Iowa State University Press, 1996.
4 龙彦志, 梁应剑, 黄巧平, 等. 基于多普勒频移的光学大气测速系统设计[J]. 北京航空航天大学学报201844(12): 2521-2527.
  LONG Y Z, LIANG Y J, HUANG Q P, et al. Design of optical airspeed measurement system based on Doppler shift[J]. Journal of Beijing University of Aeronautics and Astronautics201844(12): 2521-2527 (in Chinese).
5 JOST M, SCHWEGMANN F, KOHLER T. Flush air data system-an advanced air data system for the aerospace industry[C]∥Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston: AIAA, 2004.
6 AUGERE B, BESSON B, FLEURY D, et al. 1.5 μm lidar anemometer for true air speed, angle of sideslip, and angle of attack measurements on-board Piaggio P180 aircraft[J]. Measurement Science and Technology201627(5): 054002.
7 O’BRIEN D M, SMITH M J. Improvements in the computational modeling of rotor/fuselage interactions using unstructured grids[C]∥61st American Helicopter Society International Annual Forum. 2005.
8 NAM H J, PARK Y M, KWON O J. Simulation of unsteady rotor-fuselage aerodynamic interaction using unstructured adaptive meshes[J]. Journal of the American Helicopter Society200651(2): 141-149.
9 WILSON J C, MINECK R E. Wind-tunnel investigation of helicopter-rotor wake effects on three helicopter fuselage models: NASA-TM-X-3185[R]. Washington, D. C.: NASA, 1975.
10 LIOU S G, KOMERATH N M, MCMAHON H M. Velocity measurements of airframe effects on a rotor in a low-speed forward flight[J]. Journal of Aircraft198926(4): 340-348.
11 BRAND A G, MCMAHON H M, KOMERATH N M. Surface pressure measurements on a body subject to vortex wake interaction[J]. AIAA Journal198927(5): 569-574.
12 BI N P, LEISHMAN J G. Analysis of unsteady pressures induced on a body by a rotor[J]. Journal of Aircraft199128(11): 756-767.
13 MINECK R E, GORTON S A. Steady and periodic pressure measurements on a generic helicopter fuselage model in the presence of a roto: NASA/TM-2000-210286[R]. Washington, D. C.: NASA, 2000.
14 LIU C, THOMAS J, TUNG C. Navier-Stokes calculations for the vortex wake of a rotor in hover[C]∥Proceedings of the 16th Fluid and Plasmadynamics Conference. Reston: AIAA, 1983.
15 RAJAGOPALAN R G, MATHUR S R. Three dimensional analysis of a rotor in forward flight[J]. Journal of the American Helicopter Society199338(3): 14-25.
16 TADGHIGHI H, ANAND V. Simulation of rotor-body interactional aerodynamics: A time accurate rotor model[C]∥61st American Helicopter Society International Annual Forum. 2005.
17 KIM Y H, PARK S O. Navier-Stokes simulation of unsteady rotor-airframe interaction with momentum source method[J]. International Journal of Aeronautical and Space Sciences200910(2): 125-133.
18 RENAUD T, O’BRIEN D, SMITH M, et al. Evaluation of isolated fuselage and rotor-fuselage interaction using computational fluid dynamics[J]. Journal of the American Helicopter Society200853(1): 3-17.
19 谭剑锋, 王浩文. 直升机旋翼/机身非定常气动干扰数值分析[J]. 空气动力学学报201432(3): 320-327.
  TAN J F, WANG H W. Numerical analysis of helicopter rotor/fuselage unsteady aerodynamic interaction[J]. Acta Aerodynamica Sinica201432(3): 320-327 (in Chinese).
20 PARK Y M, KIM T, LEE D Y, et al. Computations of multicopter aerodynamics using OpenFOAM[C]∥Proceedings of the AIAA Scitech 2022 Forum. Reston: AIAA, 2022.
21 PARK Y M, JEE S K. Computations of multicopter aerodynamics in vertical flight with overset grids in OpenFOAM[C]∥Proceedings of the AIAA Aviation 2023 Forum. Reston: AIAA, 2023.
22 MCKEE J W, NAESETH R L. Experimental investigation of the drag of flat plates and cylinders in the slipstream of a hovering rotor: NACA-TN-4239[R]. Washington, D. C.: NASA, 1993.
23 CARADONNA F X, TUNG C. Experimental and analytical studies of a model helicopter rotor in hover[J]. Vertica19815(2): 149-161.
24 HAN S Q, SONG W P, HAN Z H. A novel high-order scheme for numerical simulation of wake flow over helicopter rotors in hover[J]. Chinese Journal of Aeronautics202235(5): 260-274.
25 樊枫, 林永峰, 黄水林, 等. 基于混合网格的直升机旋翼/机身非定常干扰流场数值模拟方法[J]. 南京航空航天大学学报201547(2): 180-188.
  FAN F, LIN Y F, HUANG S L, et al. Numerical simulation on rotor/fuselage unsteady interaction flowfield based on hybrid grid[J]. Journal of Nanjing University of Aeronautics & Astronautics201547(2): 180-188 (in Chinese).
文章导航

/