飞行器新概念气动布局设计专栏

基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计

  • 陈树生 ,
  • 冯聪 ,
  • 张兆康 ,
  • 赵轲 ,
  • 张新洋 ,
  • 高正红
展开
  • 西北工业大学 航空学院,西安 710072
.E-mail: sshengchen@nwpu.edu.cn

收稿日期: 2023-09-18

  修回日期: 2023-09-28

  录用日期: 2023-12-04

  网络出版日期: 2023-12-13

基金资助

中国科协青年人才托举工程(2022QNRC001);国家自然科学基金(12102345);空天飞行空气动力科学与技术全国重点实验室基金(SKLA-2022-KFKT-005)

Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method

  • Shusheng CHEN ,
  • Cong FENG ,
  • Zhaokang ZHANG ,
  • Ke ZHAO ,
  • Xinyang ZHANG ,
  • Zhenghong GAO
Expand
  • School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China

Received date: 2023-09-18

  Revised date: 2023-09-28

  Accepted date: 2023-12-04

  Online published: 2023-12-13

Supported by

Young Elite Scientists Sponsorship Program by CAST(2022QNRC001);National Natural Science Foundation of China(12102345);Project of State Key Laboratory of Aerodynamics(SKLA-2022-KFKT-005)

摘要

宽速域高超声速飞行器是航空航天领域新的战略制高点,其飞行速域与空域极大化特点导致亚/跨/超/高超声速气动性能难以兼顾。为了缓解高低速气动设计的矛盾,以典型宽速域乘波-机翼布局为研究对象,结合基于代理模型的全局优化方法和基于伴随梯度的局部优化方法,对该宽速域构型的布局参数和剖面形状进行了从全局到局部的多目标分步优化。结果表明,在约束亚声速升力系数、高超声速阻力系数的情况下,基于代理模型的布局参数优化方法能够在维持高超声速气动性能的同时,将亚声速的升阻比提升9.5%。进一步选取布局参数优化结果Pareto面上亚声速气动特性最优的构型,利用基于伴随梯度的优化方法,对机翼剖面进行梯度优化。优化结果表明,梯度优化能够有效地改善飞行器亚/高超声速状态下的阻力特性,并将翼型在几何上优化为兼顾亚/高超声速气动特性的双S翼型。通过上述从布局参数到剖面参数的优化,乘波-机翼构型的亚声速升阻比相比初始构型提升了12.4%,高超声速升阻比相比原始构型提升了6.2%。

本文引用格式

陈树生 , 冯聪 , 张兆康 , 赵轲 , 张新洋 , 高正红 . 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024 , 45(6) : 629596 -629596 . DOI: 10.7527/S1000-6893.2023.29596

Abstract

Wide-speed-range hypersonic vehicle, as a new strategic high ground in the aerospace field, face the challenge of balancing subsonic aerodynamic performance with transonic and supersonic as well as hypersonic characteristics due to the maximization of their flight speed and altitude range. To alleviate the high and low speed aerodynamic design conflict, this paper combines a global optimization approach based on surrogate models with a local optimization approach based on adjoint gradients to perform a multi-objective stepwise optimization of the layout parameters and airfoil shapes of the wide-speed-range configuration, spanning from the global to the local scale. The results indicate that under the constraints on subsonic lift coefficient and hypersonic drag coefficient, the layout parameter optimization method based on surrogate models can enhance the subsonic lift-to-drag ratio by 9.5%, while maintaining hypersonic aerodynamic performance. Furthermore, by selecting the configuration on the Pareto front of layout parameter optimization results with the optimal subsonic aerodynamic characteristics, a gradient optimization of the wing profile is performed using an adjoint gradient-based method. The optimization results demonstrate that the gradient optimization effectively enhances the drag characteristics during subsonic and hypersonic cruising states, leading to the geometric optimization of the airfoil as a dual-S shape that balances subsonic and hypersonic aerodynamic characteristics. Through the aforementioned optimization from layout parameters to profile parameters, the subsonic lift-to-drag ratio of the waverider-wing configuration increased by 12.4% compared to the original configuration, while the hypersonic lift-to-drag ratio improved by 6.2% compared to the original configuration.

参考文献

1 李宪开, 王霄, 柳军, 等. 水平起降高超声速飞机气动布局技术研究[J]. 航空科学技术202031(11): 7-13.
  LI X K, WANG X, LIU J, et al. Research on the aerodynamic layout design for the horizontal take-off and landing hypersonic aircraft[J]. Aeronautical Science & Technology202031(11): 7-13 (in Chinese).
2 BERTIN J J, CUMMINGS R M. Fifty years of hypersonics: where we’ve been, where we’re going[J]. Progress in Aerospace Sciences200339(6-7): 511-536.
3 刘瑜, 吕凡熹, 周进. XB-70飞行器折叠机翼总体性能分析[J]. 航空科学技术202233(12): 47-53.
  LIU Y, LYU F X, ZHOU J. Overall performance analysis on XB-70 folding wingtip system[J]. Aeronautical Science & Technology202233(12): 47-53 (in Chinese).
4 MIXON B, CHUDOBA B. The lockheed SR-71 blackbird - A senior capstone re-engineering experience[C]∥Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007.
5 RODI P. Vortex lift waverider configurations[C]∥50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
6 ZHAO Z T, HUANG W, YAN B, et al. Design and high speed aerodynamic performance analysis of vortex lift waverider with a wide-speed range[J]. Acta Astronautica2018151: 848-863.
7 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报201839(7): 121824.
  LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica201839(7): 121824 (in Chinese).
8 FENG C, CHEN S S, YUAN W, et al. A wide-speed-range aerodynamic configuration by adopting wave-riding-strake wing[J]. Acta Astronautica2023202: 442-452.
9 陈树生, 张兆康, 李金平, 等. 一种宽速域乘波三角翼气动布局设计[J]. 航空学报202344(24): 128441.
  CHEN S S, ZHANG Z K, LI J P, et al. A wide-speed aerodynamic layout adopting waverider-delta wing[J]. Acta Aeronautica et Astronautica Sinica202344(24): 128441 (in Chinese).
10 张阳, 韩忠华, 周正, 等. 面向高超声速飞行器的宽速域翼型优化设计[J]. 空气动力学学报202139(6): 111-127.
  ZHANG Y, HAN Z H, ZHOU Z, et al. Aerodynamic design optimization of wide-Mach-number-range airfoils for hypersonic vehicles[J]. Acta Aerodynamica Sinica202139(6): 111-127 (in Chinese).
11 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报201839(6): 121737.
  SUN X C, HAN Z H, LIU F, et al. Design and analysis of hypersonic vehicle airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica201839(6): 121737 (in Chinese).
12 刘超宇, 屈峰, 李杰奇, 等. 涡波一体乘波飞行器宽速域气动优化设计研究[J]. 力学学报202355(1): 70-83.
  LIU C Y, QU F, LI J Q, et al. Aerodynamic optimization design of the vortex-shock integrated waverider in wide speed range[J]. Chinese Journal of Theoretical and Applied Mechanics202355(1): 70-83 (in Chinese).
13 黄江涛, 刘刚, 高正红, 等. 飞行器多学科耦合伴随体系的现状与发展趋势[J]. 航空学报202041(5): 623404.
  HUANG J T, LIU G, GAO Z H, et al. Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica202041(5): 623404 (in Chinese).
14 OBARA C J, LAMAR J E. Overview of the cranked-arrow wing aerodynamics project international[J]. Journal of Aircraft200946(2): 355-368.
15 宋赋强, 阎超, 马宝峰, 等. 锥导乘波体构型的气动特性不确定度分析[J]. 航空学报201839(2): 121519.
  SONG F Q, YAN C, MA B F, et al. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration[J]. Acta Aeronautica et Astronautica Sinica201839(2): 121519 (in Chinese).
16 TINCHER D J, BURNETT D W. Hypersonic waverider test vehicle - A logical next step[J]. Journal of Spacecraft and Rockets199431(3): 392-399.
17 CHEN S S, LI J P, LI Z, et al. Anti-dissipation pressure correction under low Mach numbers for Godunov-type schemes[J]. Journal of Computational Physics2022456: 111027.
18 CHEN S S, CAI F J, XIANG X H, et al. A low-diffusion robust flux splitting scheme towards wide-ranging Mach number flows[J]. Chinese Journal of Aeronautics202134(5): 628-641.
19 MENTER F, RUMSEY C. Assessment of two-equation turbulence models for transonic flows[C]∥Proceedings of the Fluid Dynamics Conference. Reston: AIAA, 1994.
20 关晓辉, 李占科, 宋笔锋. CST气动外形参数化方法研究[J]. 航空学报201233(4): 625-633.
  GUAN X H, LI Z K, SONG B F. A study on CST aerodynamic shape parameterization method[J]. Acta Aeronautica et Astronautica Sinica201233(4): 625-633 (in Chinese).
21 Г.С. 比施根斯.超声速飞机空气动力学和飞行力学[M]. 郭桢, 等, 译. 上海:上海交通大学出版社,2009.
  BUSHGENS G S. Aerodynamics and flight dynamics for supersonic aircraft[M]. GUO Z, et al, translated. Shanghai: Shanghai Jiao Tong University Press, 2009 (in Chinese).
文章导航

/