综述

X射线脉冲星导航空间试验进展与展望

  • 郑伟 ,
  • 王禹淞 ,
  • 姜坤 ,
  • 王奕迪
展开
  • 1.国防科技大学 空天科学学院,长沙 410073
    2.北京跟踪与通信技术研究所,北京 100094
.E-mail: wangyidi_nav@163.com

收稿日期: 2023-04-10

  修回日期: 2023-05-09

  录用日期: 2023-09-05

  网络出版日期: 2023-12-01

基金资助

国家自然科学基金(62373366);湖湘青年英才支持计划(2021RC3078)

Space experiments on X-ray pulsar navigation: Progress and prospects

  • Wei ZHENG ,
  • Yusong WANG ,
  • Kun JIANG ,
  • Yidi WANG
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Beijing Institute of Tracking and Communication Technology,Beijing 100094,China

Received date: 2023-04-10

  Revised date: 2023-05-09

  Accepted date: 2023-09-05

  Online published: 2023-12-01

Supported by

National Natural Science Foundation of China(62373366);Science and Technology Innovation Program of Hunan Province(2021RC3078)

摘要

X射线脉冲星导航(XNAV)技术作为一种新型的航天器自主导航技术,是目前深空探测巡航段最有潜力的自主导航技术之一。X射线脉冲星导航的概念提出于20世纪80年代,经过数十年的发展,该技术已逐渐从理论研究走向空间试验。介绍了近些年国内外完成的脉冲星导航空间试验,系统梳理和分析了当前脉冲星导航空间试验使用的信号处理方法、导航方法和X射线探测终端。根据国内外脉冲星导航空间试验的特点,总结了目前国内脉冲星导航试验在在轨解算和X射线探测终端方面的不足。最后,结合空间试验的现状及工程应用的实际需要,对未来脉冲星导航空间试验进行了展望。

本文引用格式

郑伟 , 王禹淞 , 姜坤 , 王奕迪 . X射线脉冲星导航空间试验进展与展望[J]. 航空学报, 2024 , 45(6) : 28843 -028843 . DOI: 10.7527/S1000-6893.2023.28843

Abstract

As a new spacecraft autonomous navigation technology, X-ray pulsar-based Navigation (XNAV) is one of the most promising navigation technologies for deep space exploration. The concept of XNAV was proposed in the 1980 s. After decades of development, XNAV gradually moves from theoretical research to space experiments. This paper introduced the space experiments on pulsar navigation completed at home and abroad in recent years, analyzed the signal processing methods, navigation methods and the X-ray detectors used in XNAV space experiments, and summarized the shortcomings of China’s XNAV space experiments in terms of on-orbit calculation and X-ray detectors. Based on the current situation of space experiments and the practical needs of engineering applications, the future development needs of XNAV are discussed.

参考文献

1 吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报20141(1): 5-17.
  WU W R, YU D Y. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration20141(1): 5-17 (in Chinese).
2 吴伟仁, 于登云, 黄江川, 等. 太阳系边际探测研究[J]. 中国科学: 信息科学201949(1): 1-16.
  WU W R, YU D Y, HUANG J C, et al. Exploring the solar system boundary[J]. Scientia Sinica (Informationis)201949(1): 1-16 (in Chinese).
3 WANG Y D, ZHENG W, ZHANG S N, et al. Review of X-ray pulsar spacecraft autonomous navigation[J]. Chinese Journal of Aeronautics202336(10): 44-63.
4 JAMES N, ABELLO R, LANUCARA M, et al. Implementation of an ESA delta-DOR capability[J]. Acta Astronautica200964(11-12): 1041-1049.
5 BECKER W, BERNHARDT M G, JESSNER A. Autonomous spacecraft navigation with pulsars[J]. 2013(7): 11–28.
6 WILLIAMS B. Technical challenges and results for navigation of NEAR shoemaker[J]. Johns Hopkins Apl Technical Digest200223: 34-45.
7 房建成, 宁晓琳, 马辛, 等. 深空探测器自主天文导航技术综述[J]. 飞控与探测20181(1): 1-15.
  FANG J C, NING X L, MA X, et al. A survey of autonomous astronomical navigation technology for deep space detectors[J]. Flight Control & Detection20181(1): 1-15 (in Chinese).
8 MOURIKIS A I, TRAWNY N, ROUMELIOTIS S I, et al. Vision-aided inertial navigation for spacecraft entry, descent, and landing[J]. IEEE Transactions on Robotics200925(2): 264-280.
9 AMZAJERDIAN F, PIERROTTET D, PETWAY L, et al. Lidar systems for precision navigation and safe landing on planetary bodies[C]∥Proc SPIE 8192, International Symposium on Photoelectronic Detection and Imaging 2011: Laser Sensing and Imaging; and Biological and Medical Applications of Photonics Sensing and Imaging, 2011: 27-33.
10 SHEIKH S I. The use of variable celestial X-ray sources for spacecraft navigation[D]. Maryland: University of Maryland, 2005.
11 CHESTER T, BUTMAN S. Navigation using X-ray pulsars[R]. Washington: NASA, 1981.
12 YU W H, SEMPER S R, MITCHELL J W, et al. NASA SEXTANT mission operations architecture[J]. Acta Astronautica2020176: 531-541.
13 ARZOUMANIAN Z, GENDREAU K C, BAKER C L, et al. The neutron star interior composition explorer (NICER): Mission definition[C]∥SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9144Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray, 2014, 9144: 579-587.
14 WINTERNITZ L M B, HASSOUNEH M A, MITCHELL J W, et al. X-ray pulsar navigation algorithms and testbed for SEXTANT[C]∥2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-14.
15 MITCHELL J W, WINTERNITZ L B, HASSOUNEH M A, et al. Sextant X-ray pulsar navigation demon-stration: Initial on-orbit results[M]∥Guidance, Navigation, and Control 2018, Pts I-Ii: Advances in the Astronautical Sciences, 2018: 1229-1240.
16 郑世界, 葛明玉, 韩大炜, 等. 基于天宫二号POLAR的脉冲星导航实验[J]. 中国科学: 物理学 力学 天文学201747(9): 120-128.
  ZHENG S J, GE M Y, HAN D W, et al. Test of pulsar navigation with POLAR on TG-2 space station[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201747(9): 120-128 (in Chinese).
17 中国科学院粒子天体物理重点实验室.天宫二号伽马暴偏振探测仪——POLAR[EB/OL]. [2023-03-01]. .
  Chinese academy of sciences, key laboratory of particle astrophysics. Polarization detector for TG-2 gamma storm-POLAR [EB/OL]. [2023-03-01]. (in Chinese).
18 姜坤, 焦文海, 郝晓龙, 等. 脉冲星试验01星科学试验与成果[J]. 航空学报202344(3): 97-106.
  JIANG K, JIAO W H, HAO X L, et al. Scientific experiments and achievements of XPNAV-1[J]. Acta Aeronautica et Astronautica Sinica202344(3): 97-106 (in Chinese).
19 帅平, 刘群, 黄良伟, 等. 首颗脉冲星导航试验卫星及其观测结果[J]. 中国惯性技术学报201927(3): 281-287.
  SHUAI P, LIU Q, HUANG L W, et al. Pulsar navigation test satellite XPNAV-1 and its observation results[J]. Journal of Chinese Inertial Technology201927(3): 281-287 (in Chinese).
20 李连升, 梅志武, 吕政欣, 等. X射线脉冲星导航探测技术发展综述[J]. 兵器装备工程学报201738(5): 1-9.
  LI L S, MEI Z W, LYU Z X, et al. Overview of the development of X-ray pulsar navigation detection technology[J]. Journal of Ordnance Equipment Engineering201738(5): 1-9 (in Chinese).
21 HUANG L W, SHUAI P, ZHANG X Y, et al. Pulsar-based navigation results: Data processing of the X-ray pulsar navigation-I telescope[J]. Journal of Astronomical Telescopes, Instruments, and Systems20195(1): 018003.
22 ZHENG S, ZHANG S, LU F, et al. In-orbit demonstration of X-ray pulsar navigation with the insight-HXMT satellite[J]. Astrophysical Journal Supplement Series2019244(1):1-18.
23 ZHANG S N, LI T P, LU F J, et al. Overview to the hard X-ray modulation telescope (Insight-HXMT) satellite[J]. Science China Physics, Mechanics & Astronomy, 202063(4): 249502.
24 张龙, 倪润立, 顾荃莹, 等. 硬X射线调制望远镜卫星总体方案及技术特点[J]. 航天器工程201827(5): 9-13.
  ZHANG L, NI R L, GU Q Y, et al. HXMT satellite design and technological characteristics[J]. Spacecraft Engineering201827(5): 9-13 (in Chinese).
25 WANG Y D, ZHANG S N, GE M Y, et al. Fast on-orbit pulse phase estimation of X-ray crab pulsar for XNAV flight experiments[J]. IEEE Transactions on Aerospace and Electronic Systems202359(3): 3395-3404.
26 WANG Y D, ZHENG W, ZHANG D P. X-ray pulsar/starlight Doppler deeply-integrated navigation method[J]. Journal of Navigation201770(4): 829-846.
27 WANG Y D, ZHENG W. Pulse phase estimation of X-ray pulsar with the aid of vehicle orbital dynamics[J]. Journal of Navigation201669(2): 414-432.
28 WANG Y D, ZHANG W. Pulsar phase and Doppler frequency estimation for XNAV using on-orbit epoch folding[J]. IEEE Transactions on Aerospace and Electronic Systems201652(5): 2210-2219.
29 WANG Y S, WANG Y D, ZHENG W. On-orbit pulse phase estimation based on CE-Adam algorithm[J]. Aerospace20218(4): 95.
30 WINTERNITZ L B, HASSOUNEH M A, MITCHELL J W, et al. SEXTANT X-ray pulsar navigation demonstration: Additional on-orbit results[C]∥Proceedings of the 2018 SpaceOps Conference. Reston: AIAA, 2018.
31 张大鹏, 呼延宗泊, 李恒年. 基于卫星实测数据的X射线脉冲星导航体制验证[J]. 航空学报202344(3): 526510.
  ZHANG D P, HUYAN Z B, LI H N. X-ray pulsar-based navigation verification based on satellite measured data[J]. Acta Aeronautica et Astronautica Sinica202344(3): 526510 (in Chinese).
32 周可人. 基于XPNAV-1实测数据的X射线脉冲星单星定轨仿真分析[D]. 西安: 西安理工大学, 2020.
  ZHOU K R. Simulation of single X-ray pulsar orbit determination on XPNAV-1 measured data[D]. Xi’an: Xi’an University of Technology, 2020 (in Chinese).
33 OKAJIMA T, SOONG Y, BALSAMO E R, et al. Performance of NICER flight X-ray concentrator[C]∥ SPIE Astronomical Telescopes + Instrumentation. Proc SPIE 9905Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, 2016: 1495-1501.
34 KEITH C. NASA Set to Demonstrate X-ray Communications in Space[EB/OL]. (2019-02-01) [2023-05-09]. .
35 肖华林, 董永伟, 吴伯冰, 等. TG-2伽玛暴偏振探测仪POLAR[J]. 载人航天201521(1): 32-36, 43.
  XIAO H L, DONG Y W, WU B B, et al. POLAR gamma ray burst polarimeter onboard TG-2 spacelab[J]. Manned Spaceflight201521(1): 32-36, 43 (in Chinese).
36 李旭芳, 刘聪展, 张翼飞, 等. 硬X射线调制望远镜卫星高能望远镜设计与验证[J]. 航天器工程201827(5): 120-126.
  LI X F, LIU C Z, ZHANG Y F, et al. Design and verification of high energy telescope onboard HXMT satellite[J]. Spacecraft Engineering201827(5): 120-126 (in Chinese).
37 曹学蕾, 姜维春, 张万昌, 等. 硬X射线调制望远镜卫星中能望远镜设计与验证[J]. 航天器工程201827(5): 127-133.
  CAO X L, JIANG W C, ZHANG W C, et al. Design and verification of medium energy telescope onboard HXMT satellite[J]. Spacecraft Engineering201827(5): 127-133 (in Chinese).
38 陈勇, 崔苇苇, 李炜, 等. 硬X射线调制望远镜卫星低能望远镜设计与验证[J]. 航天器工程201827(5): 134-138.
  CHEN Y, CUI W W, LI W, et al. Design and verification of low energy telescope onboard HXMT satellite[J]. Spacecraft Engineering201827(5): 134-138 (in Chinese).
39 LI L H, GU Y, ZHANG Z, et al. An effective system for evaluating the performance of micro pore optics used for lobster eye X-ray telescope[J]. Optical Materials2023136: 113383.
40 国际上首次实现大视场龙虾眼 X 射线成像观测[EB/OL]. (2022-12-14) [2023-06-08]. .
  First wide field-of-view X-ray observations by a lobster-eye focusing telescope in orbit [EB/OL]. (2022-12-14) [2023-06-08]. (in Chinese).
41 袁为民, 张臣, 陈勇, 等. 爱因斯坦探针: 探索变幻多姿的X射线宇宙[J]. 中国科学: 物理学 力学 天文学201848(3): 6-25.
  YUAN W M, ZHANG C, CHEN Y, et al. Einstein probe: Exploring the ever-changing X-ray universe[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 201848(3): 6-25 (in Chinese).
42 ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray timing and polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 201962(2): 29502.
文章导航

/