典型飞机壁板结构的抗屈曲优化设计与试验验证
收稿日期: 2023-09-07
修回日期: 2023-10-08
录用日期: 2023-10-25
网络出版日期: 2023-11-22
基金资助
国家重点研发计划(2022YFB4603101);国家自然科学基金(12111530244);中央高校基本科研业务费专项资金(D5000230049)
Buckling⁃resisting optimization design of typical aircraft panel and test validation
Received date: 2023-09-07
Revised date: 2023-10-08
Accepted date: 2023-10-25
Online published: 2023-11-22
Supported by
National Key Research and Development Program of China(2022YFB4603101);National Natural Science Foundation of China(12111530244);The Fundamental Research Funds for the Central Universities(D5000230049)
加筋壁板是飞机机身和机翼中常见的典型承力结构,其在轴压和机身弯矩载荷作用下极易发生屈曲失效,严重制约飞行器安全性能与服役周期。飞机结构静强度校核时多采用经验公式进行工程计算,其中加筋壁板结构承载能力的工程计算与机身框结构端部支持系数的选取密切相关。现有飞机型号研制中端部支持系数的选取通常较为保守,结构安全裕度大、质量冗余,阻碍了飞行器轻量化水平的进一步提升。为此,首先基于欧拉长柱失稳理论,建立了基于切缝法的典型飞机壁板结构端部支持系数仿真计算模型;同时深入分析了端部支持系数与加筋壁板结构和支撑框段的耦合作用关系;进一步地,分析了框、长桁等结构特征参数对端部支持系数的影响规律,并分别开展了框、长桁-蒙皮以及框-长桁-蒙皮协同优化的飞机壁板结构抗屈曲设计;最后,基于增材制造缩比样件和轴压屈曲试验,验证了典型壁板结构抗屈曲优化设计方法的有效性。所建立的仿真分析模型和优化设计方法实现了飞机壁板结构抗屈曲性能的有效提升,对进一步提升飞机性能指标具有重要意义。
孟亮 , 杨金沅 , 杨智威 , 高彤 , 刘洪权 , 张卫红 . 典型飞机壁板结构的抗屈曲优化设计与试验验证[J]. 航空学报, 2024 , 45(5) : 529679 -529679 . DOI: 10.7527/S1000-6893.2023.29679
Stiffened panels are common load-bearing structures in aircraft fuselage and wings. Under axial compression and fuselage bending loads, they are susceptible to buckling failure, which limits the structural safety and aircraft service life. Empirical formula is often used for engineering calculations in aircraft structural static strength assessment. The engineering calculation of load-carrying capacity for stiffened panels is closely related to the selection of end support coefficients for fuselage frame structures. In the development of existing aircraft models, typically conservative end support coefficients are chosen, resulting in excessive structural safety margins and weight redundancies, hindering further advancements in aircraft lightweight design. To address the problem, this study first establishes a simulation calculation model for end support coefficients of typical aircraft panel structures based on slitting method, using Euler’s buckling theory. Subsequently, the coupled relationship between end support coefficients and the interaction between stiffened panel structures and supporting frame segments is analyzed in depth. Furthermore, the influence structural characteristic parameters such as frames and longitudinal stiffeners on end support coefficients is analyzed, and integrated buckling-resisting optimization designs of aircraft panel structure are conducted for frames, longitudinal stiffeners-skin, and frame-skin-longitudinal stiffener configurations. Finally, the effectiveness of buckling-resisting optimization designs for typical panel structure is validated through additive manufacturing of scaled-down specimens and axial compression tests. The established simulation and optimization methods in this study effectively enhance the buckling resistance of aircraft panel structures, offering significant opportunities for improving aircraft performances.
1 | 王博, 郝鹏, 杜凯繁, 等. 计及缺陷敏感性的网格加筋筒壳结构轻量化设计理论与方法[J]. 中国基础科学, 2018, 20(3): 28-31. |
WANG B, HAO P, DU K F, et al. Lightweight design theory and method of grid stiffened cylinder shell allowing for imperfection sensitivity[J]. China Basic Science, 2018, 20(3): 28-31 (in Chinese). | |
2 | 乔丕忠, 王艳丽, 陆林军. 圆柱壳稳定性问题的研究进展[J]. 力学季刊, 2018, 39(2): 223-236. |
QIAO P Z, WANG Y L, LU L J. Advances in stability study of cylindrical shells[J]. Chinese Quarter of Mechanics, 2018, 39(2): 223-236 (in Chinese). | |
3 | WAGNER H N R, HüHNE C. Robust knockdown factors for the design of cylindrical shells under axial compression: potentials, practical application and reliability analysis[J]. International Journal of Mechanical Sciences, 2018, 135: 410-430. |
4 | ELISHAKOFF I. Probabilistic resolution of the twentieth century conundrum in elastic stability[J]. Thin-Walled Structures, 2012, 59: 35-57. |
5 | JIAO P, CHEN Z, TANG X Y, et al. Design of axially loaded isotropic cylindrical shells using multiple perturbation load approach- simulation and validation[J]. Thin-Walled Structures, 2018, 133: 1-16. |
6 | ZHU S, YAN J, CHEN Z, et al. Effect of the stiffener stiffness on the buckling and post-buckling behavior of stiffened composite panels-experimental investigation [J]. Composite Structures, 2015, 120: 334-345. |
7 | LIMA J P S, CUNHA M L, SANTOS E D, et al. Constructal design for the ultimate buckling stress improvement of stiffened plates submitted to uniaxial compressive load[J]. Engineering Structures, 2020, 203: 109883. |
8 | WU Z, WEAVER P M, RAJU G, et al. Buckling analysis and optimization of variable angle tow composite plates[J]. Thin-walled Structures, 2012, 60: 163-172. |
9 | DONG X, DING X, LI G, et al. Stiffener layout optimization of plate and shell structures for buckling problem by adaptive growth method[J]. Structural and Multidisciplinary Optimization, 2020, 61: 301-318. |
10 | JIANG X, HUO W, LIU C, et al. Explicit layout optimization of complex rib-reinforced thin-walled structures via computational conformal mapping (CCM)[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 404: 115745. |
11 | HAN J, WANG S, CHEN Y, et al. Analytical derivation of rib bearing angle of reinforcing bar subject to axial loading[J]. Magazine of Concrete Research, 2019, 71(4): 175-183. |
12 | CHRISTENSEN C F, WANG F, SIGMUND O. Multiscale topology optimization considering local and global buckling response[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 408: 115969. |
13 | ZHANG W, JIU L, MENG L. Buckling-constrained topology optimization using feature-driven optimization method[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 37. |
14 | MENG L, ZHANG W, QUAN D, et al. From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap[J]. Archives of Computational Methods in Engineering, 2020, 27: 805-830. |
15 | AAGE N, ANDREASSEN E, LAZAROV B S, et al. Giga-voxel computational morphogenesis for structural design[J]. Nature, 2017, 550(7674): 84-86. |
16 | FENG S, ZHANG W, MENG L, et al. Stiffener layout optimization of shell structures with B-spline parameterization method[J]. Structural and Multidisciplinary Optimization, 2021, 63: 2637-2651. |
17 | CUI J, SU Z, ZHANG W, et al. Buckling optimization of non-uniform curved grid-stiffened composite structures (NCGCs) with a cutout using conservativeness-relaxed globally convergent method of moving asymptotes[J]. Composite Structures, 2022, 280: 114842. |
18 | LIU D, HAO P, ZHANG K, et al. On the integrated design of curvilinearly grid-stiffened panel with non-uniform distribution and variable stiffener profile[J]. Materials & Design, 2020, 190: 108556. |
19 | MENG L, ZHANG J, HOU Y, et al. Revisiting the Fibonacci spiral pattern for stiffening rib design[J]. International Journal of Mechanical Sciences, 2023, 246: 108131. |
20 | 孟亮, 张靖, 王亚栋, 等. 发动机外涵道机匣加筋布局轻量化设计研究[J]. 航空学报, (2023-07-05)[2023-09-18]. |
MENG L, ZHANG J, WANG Y D, et al. Lightweight design of stiffening ribs layout of a bypass engine casing[J]. Acta Aeronautica et Astronautica Sinica, (2023-07-05)[2023-09-18] (in Chinese). | |
21 | VASHISHT K S V. Experimental investigation of the aircraft stiffened panel structure under pressure loads[J]. International Journal of Innovations in Engineering and Technology, 2016, 7(4): 462-472. |
22 | 孙为民, 童明波, 董登科, 等. 加筋壁板轴压载荷下后屈曲稳定性试验研究[J]. 实验力学, 2008(4): 333-338. |
SUN W M, TONG M B, DONG D K, et al. Post-buckling and stability studies of curved stiffened panels subjected to an axial compression load[J]. Journal of Experimental Mechanics, 2008(4): 333-338 (in Chinese). | |
23 | 苏雁飞, 赵占文, 薛应举. 轴压载荷下复合材料薄壁加筋板后屈曲承载能力分析与试验验证[J]. 航空科学技术, 2014, 25(12): 26-29. |
SU Y F, ZHAO Z W, XUE Y J. Post-buckling study and test verification of thin-walled composite stiffened panel under compression load[J]. Aeronautical Science & Technology, 2014, 25(12): 26-29 (in Chinese). | |
24 | LANZI L, BISAGNI C. Post-buckling experimental tests and numerical analyses on composite stiffened panels[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2003: 1795. |
25 | 龚德志, 王新栋, 叶聪杰. 多梁式中央翼盒下壁板压缩稳定性研究[J]. 民用飞机设计与研究, 2017(4): 88-94. |
GONG D Z, WANG X D, YE C J. Stability study of buckling on stiffened lower panel for center wing box with multi-beam[J]. Civil Aircraft Design& Research, 2017 (4): 88-94 (in Chinese). | |
26 | 王海燕, 童贤鑫, 丘建中, 等. 一种端部支持系数分析计算方法: CN104951616 A[P]. 2015-09-30. |
WANG H Y, TONG X X, QIU J Z, et al. An analysis and calculation method of end support coefficient: CN104951616 A[P]. 2015-09-30 (in Chinese). | |
27 | LIMA J P S, ROCHA L A O, DOS SANTOS E D, et al. Constructal design and numerical modeling applied to stiffened steel plates submitted to elasto-plastic buckling[J]. Proceedings of the Romanian Academy Series A-Mathematics Physics Technical Sciences Information Science, 2018, 19: 195-200. |
28 | RAHBAR-RANJI A. Elastic buckling analysis of longitudinally stiffened plates with flat-bar stiffeners[J]. Ocean Engineering, 2013, 58: 48-59. |
29 | RAHMAN M, OKUI Y, SHOJI T, et al. Probabilistic ultimate buckling strength of stiffened plates, considering thick and high-performance steel[J]. Journal of Constructional Steel Research, 2017, 138: 184-195. |
30 | SUN Z, LEI Z, BAI R, et al. Prediction of compression buckling load and buckling mode of hat-stiffened panels using artificial neural network[J]. Engineering Structures, 2021, 242: 112275. |
31 | FONSECA C M, FLEMING P J. Genetic algorithms for multiobjective optimization: formulation discussion and generalization[C]∥ Proceedings of the 5th International Conference on Genetic Algorithms. 1993: 416-423. |
32 | JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. |
33 | KLEIJNEN J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3): 707-716. |
34 | JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using kriging model[J]. Journal of Aircraft, 2005, 42(2): 413-420. |
/
〈 |
|
〉 |