论文

共轴刚性旋翼高速直升机前飞性能操纵策略影响

  • 崔壮壮 ,
  • 原昕 ,
  • 赵国庆 ,
  • 井思梦 ,
  • 招启军
展开
  • 南京航空航天大学 航空宇航学院,南京 210016
.E-mail: zhaoqijun@nuaa.edu.cn

收稿日期: 2023-07-03

  修回日期: 2023-09-19

  录用日期: 2023-10-16

  网络出版日期: 2023-11-01

基金资助

国家自然科学基金(12072156);国家重点实验室基金(61422202103);江苏高校优势学科建设工程资助项目

Influence of control strategy on forward flight performance of coaxial rigid rotor high⁃speed helicopters

  • Zhuangzhuang CUI ,
  • Xin YUAN ,
  • Guoqing ZHAO ,
  • Simeng JING ,
  • Qijun ZHAO
Expand
  • College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

Received date: 2023-07-03

  Revised date: 2023-09-19

  Accepted date: 2023-10-16

  Online published: 2023-11-01

Supported by

National Natural Science Foundation of China(12072156);National Key Laboratory Foundation of China(61422202103);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

应用前行桨叶概念的共轴刚性旋翼高速直升机具有较高的最大飞行速度,但共轴刚性旋翼与推力桨的配合带来了操纵冗余问题,本文以提升高速直升机飞行性能为目标,开展了旋翼/推力桨操纵策略影响分析。首先,建立了一套用于共轴刚性旋翼、推力桨与机身气动力预测的高精度计算流体力学(CFD)方法;其次,提出了CFD-代理模型(SM)-遗传算法(GA)结合的共轴刚性旋翼/推力桨冗余操纵鲁棒配平方法。在此基础上,开展了旋翼/推力桨前向拉力分配、旋翼升力偏置量和机身姿态等操纵策略对高速直升机飞行性能的影响分析,获得了能够有效提升高速直升机最大前飞速度、实用升限的操纵策略。结果表明:固定机身俯仰角前飞时,旋翼分配小部分前向拉力可以提升高速直升机最大平飞速度,最大可提升10.78%;在海平面飞行时,旋翼升力偏置量为0.3,直升机具有最大前飞速度,升力偏置量为0.2,直升机实用升限最大;机身俯仰角为-1°时,高速直升具有最大前飞速度和实用升限,俯仰角过大或过小都会降低前飞性能。

本文引用格式

崔壮壮 , 原昕 , 赵国庆 , 井思梦 , 招启军 . 共轴刚性旋翼高速直升机前飞性能操纵策略影响[J]. 航空学报, 2024 , 45(9) : 529256 -529256 . DOI: 10.7527/S1000-6893.2023.29256

Abstract

The coaxial rigid rotor high-speed helicopter based on the forward blade concept has a high maximum flight speed, but the cooperation of the coaxial rigid rotor and the propellor brings the problem of handling redundancy. To improve the flight performance of the high-speed helicopter, this paper carries out the analysis of the influence of the rotor/thrust blade control strategy. Firstly, a high-precision Computational Fluid Dynamics (CFD) method for predicting the aerodynamic forces of coaxial rigid rotor, propellor and fuselage is established. Secondly, a robust trim method for redundant control of coaxial rigid rotor/propellor is proposed based on CFD-Surrogate Model (SM)-Genetic Algorithm (GA). On this basis, the influence of control strategies such as rotor/propellor forward thrust distribution, rotor lift offset and fuselage attitude on the flight performance of high-speed helicopter is analyzed, and the control strategies that can effectively improve the maximum forward flight speed and practical lift limit of high-speed helicopter are obtained. The results show that with fixed fuselage pitch angle, the maximum horizontal flight speed of the high-speed helicopter can be increased by 10.78% when a small part of the forward thrust is distributed by the rotor. When flying at sea level, the helicopter has the maximum forward speed when the lift offset of the rotor is 0.3, and has the maximum service ceiling when the lift offset is 0.2. When the fuselage pitch angle is -1°, the high-speed helicopter has the maximum forward flight speed and service ceiling. If the fuselage pitch angle is too large or too small, the forward flight performance will be reduced.

参考文献

1 CHENEY M C. The ABC helicopter[J]. Journal of the American Helicopter Society196914(4): 10-19.
2 KWON Y M, PARK J S, WIE S Y, et al. Aeromechanics analyses of a modern lift-offset coaxial rotor in high-speed forward flight[J]. International Journal of Aeronautical and Space Sciences202122(2): 338-351.
3 OZDEMIR G T. In-flight performance optimization for rotorcraft with redundant controls[D]. Michigan: The Pennsylvania State University, 2013: 48-49.
4 CAO Y H, WANG M S, LI G Z. Flight dynamics modeling, trim, stability, and controllability of coaxial compound helicopters[J]. Journal of Aerospace Engineering202134(6): 04021084.
5 QIU Y Q, LI Y, LANG J X, et al. Dynamics analysis and control of coaxial high-speed helicopter in transition flight?[J]. Aerospace Science and Technology2023137: 108278.
6 FERGUSON K, THOMSON D. Performance comparison between a conventional helicopter and compound helicopter configurations[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering2015229(13): 2441-2456.
7 SAITO S, AZUMA A. A numerical approach to co-axial rotor aerodynamics[C]∥Seventh European Rotorcraft and Powered Lift Aircraft Forum. Garmisch-Partenkirchen: Federal Republic of Germany, 1981.
8 VALKOV T V. Aerodynamic loads computation on coaxial hingeless helicopter rotors[C]∥ Proceedings of the 28th Aerospace Sciences Meeting. Reston: AIAA, 1990.
9 KIM H W, KENYON A R, BROWN R E, et al. Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight[J]. The Aeronautical Journal2009113(1140): 65-78.
10 佘明人. 共轴刚性旋翼高速直升机飞行动力学建模及飞行特性研究[D]. 南京: 南京航空航天大学, 2021: 11-19.
  SHE M R. Research on the flight dynamics modeling and flight characteristics of a coaxial rigid rotor high-speed helicopter[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 11-19 (in Chinese).
11 张银. 复合式共轴刚性旋翼直升机气动干扰及飞行特性分析[D]. 南京: 南京航空航天大学, 2014: 47-49.
  ZHANG Y. Research on aerodynamic interaction and flight characteristics of compound helicopter with rigid coaxial rotor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 47-49 (in Chinese).
12 袁野, 陈仁良, 李攀. 基于涡环尾迹模型的共轴刚性旋翼直升机飞行动力学建模[J]. 航空学报201839(3): 121564.
  YUAN Y, CHEN R L, LI P. Flight dynamic modelling for coaxial rigid rotor helicopter using vortex-ring wake model[J]. Acta Aeronautica et Astronautica Sinica201839(3): 121564 (in Chinese).
13 卢丛玲, 祁浩天, 徐国华. 升力偏置对共轴刚性旋翼前飞气动特性的影响[J]. 航空学报201940(11): 122906.
  LU C L, QI H T, XU G H. Influence of lift offset on rigid coaxial rotor aerodynamic characteristics in forward flight[J]. Acta Aeronautica et Astronautica Sinica201940(11): 122906 (in Chinese).
14 原昕, 招启军, 朱正, 等. 前飞速度和升力偏置量对共轴刚性旋翼气动特性影响分析[J]. 南京航空航天大学学报201951(2): 213-219.
  YUAN X, ZHAO Q J, ZHU Z, et al. Flow-field characteristics measurements of coaxial rigid rotor in forward flight[J]. Journal of Nanjing University of Aeronautics & Astronautics201951(2): 213-219 (in Chinese).
15 HAYAMI K, SUGAWARA H, YUMINO T, et al. CFD analysis on the performance of a coaxial rotor with lift offset at high advance ratios[J]. Aerospace Science and Technology2023135: 108194.
16 ZHAO Q J, ZHAO G Q, WANG B, et al. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor[J]. Chinese Journal of Aeronautics201831(2): 214-224.
17 WANG B, CAO C K, ZHAO Q J, et al. Aeroacoustic characteristic analyses of coaxial rotors in hover and forward flight[J]. International Journal of Aeronautical and Space Sciences202122(6): 1278-1292.
18 招启军, 张威, 原昕, 等. 共轴刚性旋翼气动外形优化设计[J]. 南京航空航天大学学报201951(2): 160-165.
  ZHAO Q J, ZHANG W, YUAN X, et al. Optimization design of coaxial rotor aerodynamic planform[J]. Journal of Nanjing University of Aeronautics & Astronautics201951(2): 160-165 (in Chinese).
19 NAGASHIMA T, SHINOHARA K, BABA T. A flow visualization study for the tip vortex geometry of the coaxial counter rotating rotor in hover[J]. Technical Note197725(284): 442-445.
20 COLEMAN C P. A survey of theoretical and experimental coaxial rotor aerodynamic research: NASA/TP-1997-3675[R]. Washington, D.C.: NASA, 1997.
21 DINGELDEIN R C. Wind-tunnel studies of the performance of multirotor configurations: NACA/TN-1954-3236[R]. Washington, D.C.: NACA, 1954.
22 EVANS A J, LINER G. A wind-tunnel investigation of the aerodynamic characteristics of a full-scale sweptback propeller and two related straight propellers: NACA/RM-1951-L5005[R]. Washington, D.C.: NACA, 1951.
23 FREEMAN C E, MINECK R E. Fuselage surface pressure measurements of a helicopter wind-tunnel model with a 3.15-meter diameter single rotor: NASA/TM-1979-80051[R]. Washington, D.C.: NASA, 1979.
24 WANG B, YUAN X, ZHAO Q J, et al. Geometry design of coaxial rigid rotor in high-speed forward flight[J]. International Journal of Aerospace Engineering20202020: 6650375.
25 陈仁良, 高正. 直升机飞行动力学[M]. 北京: 科学出版社, 2003: 4-8.
  CHEN R L, GAO Z. Helicopter flight dynamics[M]. Beijing: Science Press, 2003: 4-8 (in Chinese).
26 JING S M, ZHAO Q J, ZHAO G Q, et al. Multi-objective airfoil optimization under unsteady-freestream dynamic stall conditions[J]. Journal of Aircraft202360(2): 293-309.
27 BALLIN M. Validation of a real-time engineering simulation of the UH-60A helicopter: NASA-TM88360[R]. Washington, D.C.: NASA, 1987.
文章导航

/