基于数据驱动的纤维增强复合材料自动铺放速度预测与规划
收稿日期: 2023-07-12
修回日期: 2023-07-27
录用日期: 2023-09-20
网络出版日期: 2023-10-08
Prediction and planning of automatic laying speed for fiber reinforced composite materials based on data⁃driven model
Received date: 2023-07-12
Revised date: 2023-07-27
Accepted date: 2023-09-20
Online published: 2023-10-08
复合材料自动铺放(AFP)过程中,铺放速度的突变极易引起丝束翻折、褶皱、滑移等缺陷,从而降低铺放质量和铺放效率。基于铺放速度的预测结果进行优化调整,是提高铺放速度稳定性、保障铺放质量的重要途径。为此,提出一种基于数据驱动的铺丝机速度预测及规划方法。首先,基于随机森林方法,建立了以铺丝机运动轴为子树的铺放速度预测模型,提出以关节标称速度、加速度、关节轨迹夹角为输入特征,以关节实际速度为输出特征的随机森林模型特征参数定义方法;进一步,基于铺放速度预测结果分析,提出了指令速度的分段匀速规划方法;最后,给出了参考指令速度的制造周期预估方法。采用六自由度卧式机床的进气道铺放实验对上述方法进行验证。结果表明,该方法对同训练角度铺层铺放速度的预测准确度达到91%,随着学习数据增加,各角度铺层路径的速度预测精度均有提升。采用基于铺放速度预测结果的指令速度分段规划方法,可显著降低速度突变,有效提升铺放质量。在计算成本方面,通过与神经网络方法相比,证明了随机森林方法具备高效的铺放速度预测水平。
杨倩 , 王彦哲 , 杨迪 , 李泽众 , 曲巍崴 . 基于数据驱动的纤维增强复合材料自动铺放速度预测与规划[J]. 航空学报, 2024 , 45(10) : 429313 -429313 . DOI: 10.7527/S1000-6893.2023.29313
During the Automated Fiber Placement (AFP) process of composite materials, sudden changes in laying speed can easily cause defects such as tows folding, wrinkles, and slippage, thereby reducing laying quality and efficiency. Optimizing and adjusting laying speed based on predictive results is an important approach to improve laying speed stability and ensure laying quality. Therefore, this paper proposes a data-driven method for predicting and planning the laying speed of fiber placement machines. Firstly, based on the random forest method, a laying speed prediction model with the motion axis of the laying machine as the subtree is established. A method for defining feature parameters of the random forest model is proposed, with joint nominal speed, acceleration, and joint trajectory angle as input features, and actual joint speed as output features. Furthermore, based on the analysis of speed prediction results, a segmented uniform command speed planning method is proposed. Finally, a method for estimating the manufacturing cycle based on command speed is given. The above methods are verified through laying experiments on a six-degree-of-freedom horizontal machine tool. The results show that the accuracy of predicting laying speed for layers laid at the same training angle reaches 91%, and with the increase of learning data, the prediction accuracy of laying paths at various angles is improved. The segmented planning method for command speed based on speed prediction results can significantly reduce speed fluctuations and effectively improve laying quality. In terms of computational cost, compared with neural network methods, the random forest method demonstrates efficient laying speed prediction capabilities.
1 | 牛春匀. 实用飞机复合材料结构设计与制造[M]. 程小全,张纪奎, 译. 北京: 航空工业出版社, 2010: 20-25. |
NIU C Y. Design and manufacturing of practical aircraft composite structure[M]. CHENG X Q, ZHANG J K, translated. Beijing: Aviation Industry Press, 2010: 20-25 (in Chinese). | |
2 | 古托夫斯基 T G. 先进复合材料制造技术[M]. 李宏运,译. 北京: 化工工业出版社, 2004: 30-36. |
GUTOWSKI T G. Advanced composite material manufacturing technology[M]. LI H Y, translated. Beijing: Chemical Industry Press, 2004: 30-36 (in Chinese). | |
3 | 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1): 1-12. |
DU S Y. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica, 2007, 24(1): 1-12 (in Chinese). | |
4 | FREEMAN W T. The use of composites in aircraft primary structure[J]. Composites Engineering, 1993, 3(7-8): 767-775. |
5 | 贾振元, 肖军, 湛利华, 等. 大型航空复合材料承力构件制造关键技术[J]. 中国基础科学, 2019, 21(2): 20-27. |
JIA Z Y, XIAO J, ZHAN L H, et al. Research of large aviation and loading-bearing composite components manufacturing[J]. China Basic Science, 2019, 21(2): 20-27 (in Chinese). | |
6 | 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1): 1-10. |
DU S Y, GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 1-10 (in Chinese). | |
7 | DHINAKARAN V, SURENDAR K V, HASUNFUR RIYAZ M S, et al. Review on study of thermosetting and thermoplastic materials in the automated fiber placement process[J]. Materials Today: Proceedings, 2020, 27: 812-815. |
8 | 肖军, 李勇, 文立伟, 等. 树脂基复合材料自动铺放技术进展[J]. 中国材料进展, 2009, 28(6): 28-32. |
XIAO J, LI Y, WEN L W, et al. Progress of automated placement technology for polymer composites[J]. Materials China, 2009, 28(6): 28-32 (in Chinese). | |
9 | FRKETIC J, DICKENS T, RAMAKRISHNAN S. Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing[J]. Additive Manufacturing, 2017, 14: 69-86. |
10 | KOZACZUK K. Automated fiber placement systems overview[J]. Transactionsofthe Institute of Aviation, 2016, 245(4): 52-59. |
11 | 方宜武. 基于测地线算法的复合材料翼梁自动铺丝技术研究[D]. 南京: 南京航空航天大学, 2014: 15-20. |
FANG Y W. Research on automated fiber placement technology of composite wing spar based on geodesic algorithm[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 15-20 (in Chinese). | |
12 | 文立伟, 肖军, 王显峰, 等. 中国复合材料自动铺放技术研究进展[J]. 南京航空航天大学学报, 2015, 47(5): 637-649. |
WEN L W, XIAO J, WANG X F, et al. Progress of automated placement technology for composites in China[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(5): 637-649 (in Chinese). | |
13 | 张建宝, 赵文宇, 王俊锋, 等. 复合材料自动铺放工艺技术研究现状[J]. 航空制造技术, 2014, 57(16): 80-83, 94. |
ZHANG J B, ZHAO W Y, WANG J F, et al. Research status of automated placement processing technology of composites[J]. Aeronautical Manufacturing Technology, 2014, 57(16): 80-83, 94 (in Chinese). | |
14 | DENKENA B, SCHMIDT C, WEBER P. Automated fiber placement head for manufacturing of innovative aerospace stiffening structures[J]. Procedia Manufacturing, 2016, 6: 96-104. |
15 | 肖海涛. 面向五轴数控加工的刀具位姿优化及线性插补算法研究[D]. 杭州: 浙江大学, 2019: 83-117. |
XIAO H T. Research on optimization and linear interpolation of CL data for five-axis CNC machining[D]. Hangzhou: Zhejiang University, 2019: 83-117 (in Chinese). | |
16 | ERKORKMAZ K, YEUNG C H, ALTINTAS Y. Virtual CNC system. Part II. High speed contouring application[J]. International Journal of Machine Tools and Manufacture, 2006, 46(10): 1124-1138. |
17 | TULSYAN S. Prediction and reduction of cycle time for five-axis CNC machine tools[D]. Vancouver: University of British Columbia, 2014: 63-110. |
18 | LIN M T, TSAI M S, YAU H T. Development of a dynamics-based NURBS interpolator with real-time look-ahead algorithm[J]. International Journal of Machine Tools and Manufacture, 2007, 47(15): 2246-2262. |
19 | BEUDAERT X, LAVERNHE S, TOURNIER C. Feedrate interpolation with axis jerk constraints on 5-axis NURBS and G1 tool path[J]. International Journal of Machine Tools and Manufacture, 2012, 57: 73-82. |
20 | 张盼盼, 吴凤彪, 张子英. 高精度数控机床非均匀有理B样条曲线插补控制研究[J]. 机械制造, 2020, 58(3): 59-61, 70. |
ZHANG P P, WU F B, ZHANG Z Y. Research on interpolation control of non-uniform rational B-spline curve of high precision CNC machine tool[J]. Machinery, 2020, 58(3): 59-61, 70 (in Chinese). | |
21 | 何文杰. 五轴双NURBS刀具路径拟合及其插补算法研究[D]. 合肥: 合肥工业大学, 2018: 23-104. |
HE W J. Study on five-axis dual NURBS tool path fitting and its interpolation algorithm[D]. Hefei: Hefei University of Technology, 2018: 23-104 (in Chinese). | |
22 | 宁志豪, 周璐雨, 陈豪文. 浅谈机器学习与深度学习的概要及应用[J]. 科技风, 2019(15): 19. |
NING Z H, ZHOU L Y, CHEN H W. Brief introduction and application of machine learning and deep learning[J]. Technology Wind, 2019(15): 19 (in Chinese). | |
23 | HORNIK K. Approximation capabilities of multilayer feedforward networks[J]. Neural Networks, 1991, 4(2): 251-257. |
24 | CHEN S, BILLINGS S A. Neural networks for nonlinear dynamic system modelling and identification[J]. International Journal of Control, 1992, 56(2): 319-346. |
25 | SUN C, DOMINGUEZ-CABALLERO J, WARD R, et al. Machining cycle time prediction: Data-driven modelling of machine tool feedrate behavior with neural networks[J]. Robotics and Computer-Integrated Manufacturing, 2022, 75: 102293. |
26 | 张煜东, 吴乐南, 吴含前. 工程优化问题中神经网络与进化算法的比较[J]. 计算机工程与应用, 2009, 45(3): 1-6. |
ZHANG Y D, WU L N, WU H Q. Comparison of neural network and evolutionary algorithm on engineering optimization[J]. Computer Engineering and Applications, 2009, 45(3): 1-6 (in Chinese). | |
27 | LOH W Y. Classification and regression trees[J]. WIREs Data Mining and Knowledge Discovery, 2011, 1(1): 14-23. |
28 | ALPAYDIN E. Introduction to machine learning[M]. 3rd ed. Boston: MIT Press, 2014: 21-63. |
29 | BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2): 123-140. |
30 | LIAW A, WIENER M. Classification and regression by randomForest[J]. R news, 2002, 2(3): 18-22. |
31 | PETERS J, DE BAETS B, VERHOEST N E C, et al. Random forests as a tool for ecohydrological distribution modelling[J]. Ecological Modelling, 2007, 207(2-4): 304-318. |
32 | 李艳, 李英浩, 高峰, 等. 基于互信息法和改进模糊聚类的温度测点优化[J]. 仪器仪表学报, 2015, 36(11): 2466-2472. |
LI Y, LI Y H, GAO F, et al. Investigation on optimization of temperature measurement key points based on mutual information and improved fuzzy clustering analysis[J]. Chinese Journal of Scientific Instrument, 2015, 36(11): 2466-2472 (in Chinese). | |
33 | CRAIG J J. 机器人学导论[M]. 贠超, 译. 北京: 机械工业出版社, 2018: 55-120 |
CRAIG J J. Introduction to robotics[M]. YUN C, translated.Beijing: China Machine Press, 2018: 55-120 (in Chinese). | |
34 | LI L N, WANG X G, XU D, et al. A placement path planning algorithm based on meshed triangles for carbon fiber reinforce composite component with revolved shape[J]. International Journal on Control Systems and Applications, 2014, 1(1): 23-32. |
/
〈 |
|
〉 |