临近空间技术

含非线性连接的折叠舵全时域多学科耦合分析方法及应用

  • 张程 ,
  • 任浩源 ,
  • 史泰龙 ,
  • 戴雯迪
展开
  • 中国运载火箭技术研究院,北京  100076
.E-mail: chengbb1123@163.com

收稿日期: 2023-08-18

  修回日期: 2023-09-10

  录用日期: 2023-09-18

  网络出版日期: 2023-09-27

Multidisciplinary full-time coupling methods of folding fin containing non-linear connections and their applications

  • Cheng ZHANG ,
  • Haoyuan REN ,
  • Tailong SHI ,
  • Wendi DAI
Expand
  • China Academy of Launch Vehicle Technology,Beijing  100076,China

Received date: 2023-08-18

  Revised date: 2023-09-10

  Accepted date: 2023-09-18

  Online published: 2023-09-27

摘要

飞行器为了缩减储运空间,广泛采用折叠舵面构型。针对含非线性连接的折叠舵动力学系统,基于Mindlin板方程对舵面结构进行建模,采用三阶活塞理论推导了非定常气动力模型,运用Newmark方法和牛顿法迭代法求解了含非线性边界的舵面位移时域响应,采用频域法和时域法对飞行器折叠舵面的气动弹性稳定性和位移响应进行分析,讨论了折叠机构非线性类型和模型参数对气动弹性行为的影响。研究结果表明:建立舵面模型的固有频率和非定常响应结果与商业有限元结果的偏差小于2.2%,具有较好的一致性,验证了结构动力学模型的正确性;对于多项式非线性连接刚度,在临界速度条件下表现为收敛趋势;对于间隙非线性和双线性连接刚度,在临界速度条件下表现为渐发散趋势,在0.5°间隙条件下,双线性刚度的振动幅值显著小于间隙刚度的幅值,说明在间隙折叠机构内预置扭簧能够显著降低振动响应;对于非对称混合非线性刚度,在临界速度条件下表现为渐发散趋势。该方法对飞行器流固耦合问题研究以及飞行条件下含非线性连接的折叠舵面振动响应评估具有一定指导作用。

本文引用格式

张程 , 任浩源 , 史泰龙 , 戴雯迪 . 含非线性连接的折叠舵全时域多学科耦合分析方法及应用[J]. 航空学报, 2023 , 44(S2) : 729461 -729461 . DOI: 10.7527/S1000-6893.2023.29461

Abstract

To reduce the storage and transportation space, folding fin configurations are widely used in aircraft. For dynamic systems of folding fin with nonlinear connections, the fin is modeled based on the Mindlin plate theory, and unsteady aerodynamic is simulated by third-order piston theory. The Newmark method and Newton method are used to solve time domain displacement response of the fin with non-linear boundaries. The aeroelastic stability and displacement response of the folding fin of the aircraft are analyzed using the frequency domain and time domain methods. The influence of nonlinear types and parameters of folding mechanisms on aeroelastic behavior is discussed. The results show that the difference of natural frequency and unsteady response results of the established model, and that from the commercial finite element results is less than 2.2%, indicating a good consistency and verifying the correctness of the structural dynamics model. For polynomial nonlinear connection stiffness, it exhibits a convergence trend under critical velocity conditions; for freeplay nonlinearity and bilinear connection stiffness, there is a gradual divergence trend under critical speed conditions. At a 0.5° freeplay condition, the vibration amplitude of bilinear stiffness is significantly smaller than that of freeplay stiffness, indicating that pre-installing torsion springs in freeplay folding mechanisms can significantly reduce vibration response; for asymmetric mixed nonlinear stiffness, this model exhibits a gradually divergent trend under critical velocity conditions. This method has certain guiding significance for the research of fluid structure coupling problems in aircraft and the evaluation of vibration response of folding fin with nonlinear connections under flight conditions.

参考文献

1 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报201536(4): 1011-1033.
  YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research [J]. Acta Aeronautica et Astronautica Sinica201536(4): 1011-1033 (in Chinese).
2 黄锐, 胡海岩. 飞行器非线性气动伺服弹性力学[J]. 力学进展202151(3): 428-466.
  HUANG R, HU H Y. Nonlinear aeroservoelasticity of aircraft [J]. Advances in Mechanics20215(3): 428-466 (in Chinese).
3 SHI Y Y, HE S, CUI G W, et al. Oscillation quenching and physical explanation on freeplay-based aeroelastic airfoil in transonic viscous flow[J]. Chinese Journal of Aeronautics202336(10): 124-136.
4 LIU S S, ZHAO R, YU K P, et al. Nonlinear system identification framework of folding fins with freeplay using backbone curves [J]. Chinese Journal of Aeronautics202235(10): 183-194.
5 XIANG J W, YAN Y J, LI D C. Recent advance in nonlinear aeroelastic analysis and control of the aircraft [J]. Chinese Journal of Aeronautics201427(1): 12-22.
6 LEE D H, WEISSHAAR T A. Aeroelastic studies on a folding wing configuration[C]∥46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2005: 1-12.
7 LISKA S, DOWELL E H. Continuum aeroelastic model for a folding-wing configuration[J]. AIAA Journal200947(10): 2350-2358.
8 TANG D T, DOWELL E H. Theoretical and experimental aeroelastic study for folding wing structures[J]. Journal of Aircraft200845(4): 1136-1147.
9 PITT D M. Static and dynamic aeroelastic analysis of structural wing fold hinges that are employed as an aeroelastic tailoring tool[C]∥45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston: AIAA, 2004: 1-11.
10 WANG I, GIBBS S C, DOWELL E H. Aeroelastic model of multisegmented folding wings: theory and experiment[J]. Journal of Aircraft201249(3): 911-921.
11 ZHANG W, LV S L, NI Y G. Parametric aeroelastic modeling based on component modal synthesis and stability analysis for horizontally folding wing with hinge joints [J]. Nonlinear Dynamics201892(2): 169-179.
12 OTSUKA K, WANG Y N, MAKIHARA K. Versatile absolute nodal coordinate formulation model for dynamic folding wing deployment and flutter analyses [J]. Journal of Vibration and Acoustics2019141: 011014.
13 LEE D H, CHEN P C. Nonlinear aeroelastic studies on a folding wing configuration with free-play hinge nonlinearity[C]∥47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
14 ZHAO Y H, HU H Y. Prediction of transient responses of a folding wing during the morphing process[J]. Aerospace Science and Technology201324: 89-94.
15 ZHAO Y H, HU H Y. Parameterized aeroelastic modeling and flutter analysis for a folding wing[J]. Journal of Sound and Vibration2012331(2): 308-324.
16 HUANG R, ZHOU X H. Parameterized fictitious mode of morphing wing with bilinear hinge stiffness[J]. AIAA Journal202159(7): 2641-2656.
17 HUANG R, YANG Z J, YAO X J . et al. Parameterized modeling methodology for efficient aeroservoelastic analysis of a morphing wing[J]. AIAA Journal201957(12): 5543-5552.
18 HUANG R, YU X H, ZHOU X H. Efficient nonlinear aeroservoelastic modeling for morphing wing with bilinear stiffness[J]. AIAA Journal202260(5):3135-3146.
19 XIE C C, CHEN Z Y, AN C. Aeroelastic response of a Z-shaped folding wing during the morphing process[J]. AIAA Journal202260(5): 3166-3179.
20 何昊南, 于开平, 唐宏, 等.有间隙折叠舵面的振动实验与非线性建模研究[J]. 力学学报201951(5): 1476-1488.
  HE H N, YU K P, TANG H, et al. Vibration experiment and nonlinear modelling research on the folding fin with freeplay [J]. Chinese Journal of Theoretical and Applied Mechanics201951(5): 1476-1488 (in Chinese).
21 HE H N, TANG H, YU K P, et al. Nonlinear aeroelastic analysis of folding ?n with freeplay under thermal environment[J]. Chinese Journal of Aeronautics202033(9): 2357-2371.
22 唐宏. 折叠舵面动力学建模和非线性颤振分析[D]. 哈尔滨: 哈尔滨工业大学, 2020: 52-79.
  TANG H. Dynamic modelling and nonlinear flutter analysis of a folding fin [D]. Harbin: Harbin Institute of Technology, 2020: 52-79 (in Chinese).
23 YANG N, WANG N, ZHANG X, et al. Nonlinear ?utter wind tunnel test and numerical analysis of folding ?ns with freeplay nonlinearities[J]. Chinese Journal of Aeronautics201629(1):144-159.
24 王博, 马志赛, 丁千. 基础激励下含间隙折叠舵面非线性系统辨识[J]. 振动与冲击202039(4): 122-128.
  WANG B, MA Z S, DING Q. System identification of folding rudders with freeplay nonlinearity under base excitation [J]. Journal of Vibration and Shock202039(4): 122-128 (in Chinese).
25 王强, 马志赛, 张欣, 等 .基于模态综合法的含间隙折叠舵面动态特性分析[J].航空学报202041(5): 223507.
  WANG Q, MA Z S, ZHANG X, et al. Dynamic characteristic analysis for a folding fin with freeplay nonlinearities based on mode synthesis method [J]. Acta Aeronautica et Astronautica Sinica202041(5): 223507 (in Chinese).
26 任浩源, 王毅, 王亮, 等. 航天飞行器折叠翼锁紧机构力学模型[J]. 航空动力学报202338(12): 3009-3019.
  REN H Y, WANG Y, WANG L, et al. Mechanical model of locking mechanisms of folding wing for spacecraft [J]. Journal of Aerospace Power202338(12): 3009-3019 (in Chinese).
27 PANCHAL J, BENAROYA H. Review of control surface freeplay [J]. Progress in Aerospace Science2021127: 100729.
28 任浩源, 王毅, 王亮, 等. 基于非线性接触刚度的铰接/锁紧结构动力学建模方法[J]. 强度与环境202148(6): 31-37.
  REN H Y, WANGH Y, WANG L, et al. A dynamic model of hinged-locking Structures based on contact model [J]. Structure & Environment Engineering202148(6): 31-37 (in Chinese).
29 王乐,王毅,南宫自军. 活塞理论及其改进方法在超声速翼面颤振分析中的应用[J]. 导弹与航天运载技术2011(4):13-17.
  WANG L, WANG Y, NANGONG Z J. Application of piston theory and its improved methods to the analysis of supersonic wing flutter[J]. Missiles and Space Vehicles2011(4):13-17 (in Chinese).
30 冉玉国, 刘会, 张金梅, 等. 大展弦比机翼的非线性气弹响应分析[J]. 空气动力学学报200927(4): 394-399.
  RAN Y G, LIU H, ZHANG J M, et al. Analysis of the nonlinear aeroelastic response for large-aspect-ratio wing[J]. Acta Aerodynamica Sinica200927(4): 394-399 (in Chinese).
31 任浩源, 王毅, 王亮, 等. 基于热/力试验的折叠舵连接刚度与颤振分析[J]. 航空学报202344(14): 227927.
  REN H Y, WANG Y, WANG L, et al. Connection stiffness and flutter analysis of folding fin based on thermal-mechanical test[J]. Acta Aeronautica et Astronautica Sinica202344(14): 227927 (in Chinese).
文章导航

/