结冰与防除冰

直升机旋翼防除冰技术研究进展

  • 王立国 ,
  • 周靓 ,
  • 张颂 ,
  • 吴勇 ,
  • 李鹏 ,
  • 陈佳兴
展开
  • 1.中国人民解放军31621部队,北京 101121
    2.中国空气动力研究与发展中心 结冰与防除冰重点实验室,绵阳 621000
.E-mail: 3216054916@qq.com

收稿日期: 2023-08-17

  修回日期: 2023-08-25

  录用日期: 2023-09-07

  网络出版日期: 2023-09-21

Research progress on anti-icing and de-icing technologies for helicopter rotors

  • Liguo WANG ,
  • Liang ZHOU ,
  • Song ZHANG ,
  • Yong WU ,
  • Peng LI ,
  • Jiaxing CHEN
Expand
  • 1.Unit 31621 of the Chinese People’s Liberation Army,Beijing 101121,China
    2.Key Laboratory of Icing and Anti-/de-icing,China Aerodynamics Research and Development Center,Mianyang 621000,China
E-mail: 3216054916@qq.com

Received date: 2023-08-17

  Revised date: 2023-08-25

  Accepted date: 2023-09-07

  Online published: 2023-09-21

摘要

结冰将严重影响直升机飞行性能,威胁直升机飞行安全,旋翼是直升机受到结冰影响的主要部件,如何低能耗、高效率地开展旋翼防除冰是当前直升机亟待解决的问题。旋翼结冰与固定翼不同,其流场更加复杂,许多在固定翼飞机上表现良好的防除冰技术无法在直升机旋翼上直接使用。首先介绍了旋翼结冰的特点及其主要响应因素,概括了结冰对直升机气动性能的影响;其次重点阐述了现有防除冰技术的原理、优劣和适用范围;详细论述了以电热-机械式和电热-涂层式为代表的复合防除冰技术的优势,提出了直升机旋翼防除冰后续发展的建议,对于促进直升机旋翼防除冰技术的发展具有一定的指导意义。

本文引用格式

王立国 , 周靓 , 张颂 , 吴勇 , 李鹏 , 陈佳兴 . 直升机旋翼防除冰技术研究进展[J]. 航空学报, 2023 , 44(S2) : 729458 -729458 . DOI: 10.7527/S1000-6893.2023.29458

Abstract

Icing will seriously affect the flight performance of helicopters and threaten their flight safety. The rotor is the main component of helicopters affected by icing, and how to carry out rotor anti-icing and de-icing with low energy consumption and high efficiency is an urgent problem for helicopters. Unlike that of fixed wings, rotor icing has a more complex flow field, and many anti-icing and de-icing technologies that perform well on fixed wing aircraft cannot be directly used on helicopter rotors. The characteristics and main response factors of rotor icing are introduced firstly, and the impact of icing on the aerodynamic performance of helicopters is summarized. Then, the principles, advantages and disadvantages, and scope of application of existing anti-icing and de-icing technologies are emphasized. The advantages of composite anti-icing and de-icing technologies represented by electrothermal-mechanical and electrothermal coating technologies are discussed in detail. Suggestions for the subsequent development of helicopter rotor anti-icing and de-icing are proposed. This article has certain significance for promoting the development of helicopter rotor anti-icing and de-icing technologies.

参考文献

1 陈希. 旋翼结冰的高精度数值模拟与防/除冰方法研究[D]. 南京: 南京航空航天大学, 2019.
  CHEN X. Investigations on high accuracy numerical simulation and anti/de-icing methods for rotor icing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese).
2 李岩, 王绍龙, 易贤, 等. 绕轴旋转圆柱结冰特性结冰风洞试验[J]. 航空学报201738(2): 520703.
  LI Y, WANG S L, YI X, et al. An icing wind tunnel test on icing characteristics of cylinder rotating around a shaft[J]. Acta Aeronautica et Astronautica Sinica201738(2): 520703 (in Chinese).
3 徐玉貌, 吕少杰, 曹义华, 等. 旋翼桨叶结冰对直升机飞行性能的影响[J]. 航空动力学报201631(2): 399-404.
  XU Y M, LYU S J, CAO Y H, et al. Effects of rotor blade icing on helicopter flight performance[J]. Journal of Aerospace Power201631(2): 399-404 (in Chinese).
4 刘福华, 金可, 余雄勇. 某型直升机旋翼防除冰测试技术方法研究与应用[J].测控技术201534: 35-37.
  LIU F H, JIN K, YU X Y. Research and application of the helicopter rotor anti-icing/deicing test technology [J]. Measurement & Control Technology201534: 35-37 (in Chinese).
5 李伟斌, 郝云权, 王建涛, 等. 直升机旋翼结冰影响及防/除冰方法综述[J]. 航空动力学报202338(2): 257-268.
  LI W B, HAO Y Q, WANG J T, et al. Review on influences of helicopter rotor icing and anti-/ de-icing methods[J]. Journal of Aerospace Power202338(2): 257-268 (in Chinese).
6 陈宁立, 杜健民, 吉洪湖, 等. 离心力对于旋转叶片表面积冰影响的数值模拟研究[J]. 推进技术202041(6): 1314-1323.
  CHEN N L, DU J M, JI H H, et al. Numerical study of effects of centrifugal force on ice accretion on a rotor blade[J]. Journal of Propulsion Technology202041(6): 1314-1323 (in Chinese).
7 LAMRAOUI F, FORTIN G, BENOIT R, et al. Atmospheric icing impact on wind turbine production[J]. Cold Regions Science and Technology2014100: 36-49.
8 MUHAMMED M, VIRK M S. Ice accretion on rotary-wing unmanned aerial vehicles—a review study[J]. Aerospace202310(3): 261.
9 LI L K, NING Z, HU H. An experimental study on the transient ice accretion process over a rotating UAV propeller[C]∥Proceedings of the 55th AIAA Aerospace Sciences Meeting. 2017.
10 倪章松, 刘森云, 张军, 等. 环境参数对飞机防冰热载荷的影响规律[J]. 航空动力学报202136(1): 8-14.
  NI Z S, LIU S Y, ZHANG J, et al. Influnce of environment parameters on anti-icing heat load for aircraft[J]. Journal of Aerospace Power202136(1): 8-14 (in Chinese).
11 MUHAMMED M, VIRK M S. Ice accretion on fixed-wing unmanned aerial vehicle—a review study[J]. Drones20226(4): 86.
12 何治, 常士楠, 袁修干. 悬停状态下直升机旋翼水滴撞击特性研究[J]. 北京航空航天大学学报200329(11): 1055-1058.
  HE Z, CHANG S N, YUAN X G. Research on droplet impingement property of rotor blade in hover[J]. Journal of Beijing University of Aeronautics and Astronautics200329(11): 1055-1058 (in Chinese).
13 张威, 林永峰, 陈平剑. 基于欧拉方法的旋翼翼型结冰数值模拟及参数影响[J]. 南京航空航天大学学报201143(3): 375-380.
  ZHANG W, LIN Y F, CHEN P J. Numerical simulation of ice accretion and parameter effects based on eulerian droplet model[J]. Journal of Nanjing University of Aeronautics & Astronautics201143(3): 375-380 (in Chinese).
14 陈希, 招启军. 考虑遮蔽区影响的旋翼三维水滴撞击特性计算新方法[J]. 航空学报201738(6): 120745.
  CHEN X, ZHAO Q J. New method for predicting 3-D water droplet impingement on rotor considering influence of shadow zone[J]. Acta Aeronautica et Astronautica Sinica201738(6): 120745 (in Chinese).
15 CAMPBELL S E, BROEREN A P, BRAGG M B. Sensitivity of aircraft performance to icing parameter variations[J]. Journal of Aircraft200744(5): 1758-1760.
16 LI L K, LIU Y, ZHANG Z C, et al. Effects of thermal conductivity of airframe substrate on the dynamic ice accretion process pertinent to UAS inflight icing phenomena[J]. International Journal of Heat and Mass Transfer2019131: 1184-1195.
17 DRURY M D, SZEFI J T, PALACIOS J L. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft201754(1): 220-228.
18 LI W B, LI K C, SONG C, et al. Effect of droplet MVD on icing collection efficiency for a helicopter blade [C]∥32nd Congress of the International Council of the Aeronautical Sciences. 2021.
19 KREEGER R E, TSAO J. Ice shapes on a tail rotor[R]. 2014
20 王正之. 直升机旋翼结冰数值模拟及试验研究[D]. 南京: 南京航空航天大学, 2017.
  WANG Z Z. Numerical simulation and experimental study on helicopter rotor icing[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2017 (in Chinese).
21 王正之, 杜孟华, 朱春玲, 等. 直升机旋翼结冰后三维桨叶气动特性数值分析[J]. 空军工程大学学报(自然科学版)202122(1): 33-38.
  WANG Z Z, DU M H, ZHU C L, et al. A numerical analysis on aerodynamic characteristics of three-dimensional iced rotor[J]. Journal of Air Force Engineering University (Natural Science Edition)202122(1): 33-38 (in Chinese).
22 黄明其, 王亮权, 袁红刚, 等. 直升机前飞状态旋翼结冰风洞试验研究[J]. 北京航空航天大学学报202248(6): 929-936.
  HUANG M Q, WANG L Q, YUAN H G, et al. Icing wind tunnel investigation of helicopter rotor model in forward flight state[J]. Journal of Beijing University of Aeronautics and Astronautics202248(6): 929-936 (in Chinese).
23 VILLENEUVE E, SAMAD A, VOLAT C, et al. Experimental investigation of icing effects on a hovering drone rotor performance[J]. Drones20226(11): 345.
24 YAN S, OPAZO T, PALACIOS J, et al. Experimental evaluation of multi-rotor UAV operation under icing conditions [C]∥Proceedings of the Annual Forum Proceedings-AHS International. 2018.
25 CAO Y, CHEN K. Helicopter icing[J]. The Aeronautical Journal2010114(1152): 83-90.
26 ZHU Y, PALACIOS J, ROSE J, et al. Numerical simulation and experimental validation of tailored wave guides for ultrasonic de-icing on aluminum plates[R]. 2010
27 何舟东, 朱永峰, 周景锋. 飞机电脉冲除冰技术探讨[J]. 实验流体力学201630(2): 38-45.
  HE Z D, ZHU Y F, ZHOU J F. Study on electro-impulse de-icing technology[J]. Journal of Experiments in Fluid Mechanics201630(2): 38-45 (in Chinese).
28 王毅, 元辛, 张峰. 飞机机翼防除冰系统研究进展[J]. 河南科学201230(9): 1246-1250.
  WANG Y, YUAN X, ZHANG F. The development of the wing ice protection system[J]. Henan Science201230(9): 1246-1250 (in Chinese).
29 PARENT O, ILINCA A. Anti-icing and de-icing techniques for wind turbines: critical review[J]. Cold Regions Science and Technology201165(1): 88-96.
30 RYKACZEWSKI K, ANAND S, SUBRAMANYAM S B, et al. Mechanism of frost formation on lubricant-impregnated surfaces[J]. Langmuir201329(17): 5230-5238.
31 KULINICH S A, FARHADI S, NOSE K, et al. Superhydrophobic surfaces: are they really ice-repellent[J]. Langmuir: the ACS Journal of Surfaces and Colloids201127(1): 25-29.
32 LAZAUSKAS A, GUOBIEN? A, PROSY?EVAS I, et al. Water droplet behavior on superhydrophobic SiO2 nanocomposite films during icing/deicing cycles[J]. Materials Characterization201382: 9-16.
33 周煜杰. 飞机防除冰方法的总结与探究[J]. 现代商贸工业201940(1): 195-196.
  ZHOU Y J. Summary and exploration of anti-deicing methods for aircraft[J]. Modern Business Trade Industry201940(1): 195-196 (in Chinese).
34 BLAHA B J, EVANICH P L. Pneumatic boot for helicopter rotor deicing [C]∥Proceedings of Air Transportation and Safety. 1981: 425-445.
35 REINMANN J J, SHAW R J, RANAUDO R J. NASA’s Program on Icing Research and Technology [C]∥Proceedings of the Symposium on Flight in Adverse Environmental Conditions. 1989.
36 GRAHAM M, HAWORTH L, KIMBERLY J. JUH-1H pneumatic boot deicing system flight test evaluation [R]. 1987.
37 张佳培. 基于石墨烯电热膜的直升机旋翼防除冰系统设计[M]. 武汉:华中科技大学, 2021.
  ZHANG J P. Design of helicopter rotor electrothermal anti-icing and de-icing system of graphene flexible heating thin-film [M]. Wuhan: Huazhong University of Science & Technology, 2021 (in Chinese).
38 DRURY M D, SZEFI J T, PALACIOS J L. Full-scale testing of a centrifugally powered pneumatic de-icing system for helicopter rotor blades[J]. Journal of Aircraft201754(1): 220-228.
39 PALACIOS J, WOLFE D, BAILEY M, et al. Ice testing of a centrifugally powered pneumatic deicing system for helicopter rotor blades[J]. Journal of the American Helicopter Society201560(3): 1-12.
40 李斌. 飞机除冰/防冰液及除冰技术[J]. 清洗世界201228(1): 26-31.
  LI B. Brief survey of deicing/anti-icing fluid and techniques for aircraft[J]. Cleaning World201228(1): 26-31 (in Chinese).
41 COFFMAN H J. Helicopter rotor icing protection methods[J]. Journal of the American Helicopter Society198732(2): 34-39.
42 锁俊睿, 刘壮, 高长水. 防除冰桨叶加热及温度控制系统设计[J]. 机械制造与自动化201544(4): 177-180.
  SUO J R, LIU Z, GAO C S. Design of heating and temperature control system for anti/de-icer paddles[J]. Machine Building & Automation201544(4): 177-180 (in Chinese).
43 吴海涛, 彭华乔, 张帆, 等. 非牛顿型飞机除冰/防冰液黏度影响因素分析[J]. 精细与专用化学品201725(1): 18-21.
  WU H T, PENG H Q, ZHANG F, et al. Analysis on effective factors of non-newtonian de-icing/anti-icing fluids viscosity[J]. Fine and Specialty Chemicals201725(1): 18-21 (in Chinese).
44 COFFMAN J H. Review of helicopter icing protection systems[R]. 1983
45 杨常卫, 张功虎, 孙涛, 等. 黑鹰直升机旋翼桨叶防/除冰系统研究[J]. 直升机技术2011(1): 37-44.
  YANG C W, ZHANG G H, SUN T, et al. Development of black hawk helicopter rotor blade anti-/ de-icing system[J]. Helicopter Technique2011(1): 37-44 (in Chinese).
46 RASHID T, LIANG H L, TAIMUR M, et al. Roll to roll coating of carbon nanotube films for electro thermal heating[J]. Cold Regions Science and Technology2021182: 103210.
47 谌广昌, 纪双英, 赵文明, 等. 直升机旋翼除冰系统加热垫试验研究[J]. 航空工程进展201910(2): 201-205, 211.
  CHEN G C, JI S Y, ZHAO W M, et al. Experimental study on heating pad of helicopter rotor deicing system[J]. Advances in Aeronautical Science and Engineering201910(2): 201-205, 211 (in Chinese).
48 CHEN L, ZHANG Y D, WU Q. Effect of graphene coating on the heat transfer performance of a composite anti-/ deicing component[J]. Coatings20177(10): 158.
49 邹小玲. 直升机旋翼防除冰设计与分析[J]. 直升机技术2009(3): 39-46.
  ZOU X L. The design and analysis of helicopter rotor anti-icing/deicing system[J]. Helicopter Technique2009(3): 39-46 (in Chinese).
50 ZHAO Z H, CHEN H W, LIU X L, et al. Development of high-efficient synthetic electric heating coating for anti-icing/de-icing[J]. Surface and Coatings Technology2018349: 340-346.
51 ZHAO Z H, CHEN H W, LIU X L, et al. The development of electric heating coating with temperature controlling capability for anti-icing/de-icing[J]. Cold Regions Science and Technology2021184: 103234.
52 AL-KHALIL K, FERGUSON T, PHILLIPS D, et al. A hybrid anti-icing ice protection system[C]∥Proceedings of the 35th Aerospace Sciences Meeting and Exhibit. 1997.
53 郑春涛. 复合式除冰技术研究[D]. 武汉: 华中科技大学, 2016.
  ZHENG C T. Researches on hybrid de-ice methods[D]. Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese).
54 郭艳亮. 复合式除冰控制技术及试验研究[D]. 武汉: 华中科技大学, 2017.
  GUO Y L. The control technique and experimental research for aircraft hybrid deicing[D]. Wuhan: Huazhong University of Science and Technology, 2017 (in Chinese).
55 SENCZYSZYN S, BARNARD A R. Thermal and vibration induced rotor blade deicing using carbon nanotube thermophones[J]. The Journal of the Acoustical Society of America2017142(4): 2540.
56 刘晓林, 朱彦曈, 王泽, 等. 飞行器仿生防冰涂层技术现状与趋势[J]. 航空学报202243(10): 527331.
  LIU X L, ZHU Y T, WANG Z, et al. Research progress and development trend of bio-inspired anti-icing coatings for aircraft[J]. Acta Aeronautica et Astronautica Sinica202243(10): 527331 (in Chinese).
57 苗新宇. 热力机械复合式除冰系统能耗分析[J]. 航空科学技术201526(6): 31-34.
  MIAO X Y. Energy consumption analysis of thermo-mechanical expulsion de-icing system[J]. Aeronautical Science & Technology201526(6): 31-34 (in Chinese).
58 PARK M H, HA J H, LA M, et al. Conducting super-hydrophobic thin film for electric heating applications[J]. Journal of Nanoscience and Nanotechnology201919(3): 1506-1510.
59 FORTIN G, ADOMOU M, PERRON J. Experimental study of hybrid anti-icing systems combining thermoelectric and hydrophobic coatings[C]∥SAE Technical Paper Series. 2011: 281-283.
60 ANTONINI C, INNOCENTI M, HORN T, et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems[J]. Cold Regions Science and Technology201167(1-2): 58-67.
61 STROBL T, STORM S, THOMPSON D, et al. Feasibility study of a hybrid ice protection system[J]. Journal of Aircraft201552(6): 2064-2076.
62 STROBL T, THOMPSON D S, HORNUNG M. Feasibility study of a hybrid ice protection system based on passive removal of residual ice[C]∥Proceedings of the 53rd AIAA Aerospace Sciences Meeting. 2015.
63 DE PAUW D, DOLATABADI A. Effect of superhydrophobic coating on the anti-icing and deicing of an airfoil[J]. Journal of Aircraft201754(2): 490-499.
64 朱宝. 低能耗超疏水电热蒙皮设计及防冰性能研究[M]. 西安:西北工业大学, 2018.
  ZHU B. Low power superhydrophobic electrothermal skin and its anti-icing performance [M]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
65 CHEN L, ZHANG Y D, WU Q, et al. A novel anti/de-icing system combining heat expansion film and electric heating for helicopter rotor[C]∥2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway: IEEE Press, 2017: 1072-1076.
66 WONG T S, KANG S H, TANG S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity[J]. Nature2011477(7365): 443-447.
67 LIU X L, CHEN H W, ZHAO Z H, et al. Slippery liquid-infused porous electric heating coating for anti-icing and de-icing applications[J]. Surface and Coatings Technology2019374: 889-896.
68 景向嵘, 程盼, 罗振兵, 等 . 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报202243(S2): 727765.
  JING X R, CHENG P, LUO Z B, et al. Ice breaking characteristics and crack propagation law of arc discharge plasma actuator [J]. Acta Aeronautica et Astronautica Sinica202243(S2): 727765 (in Chinese).
文章导航

/