基于多指标动态优先级的无人机协同路径规划
收稿日期: 2023-04-04
修回日期: 2023-05-05
录用日期: 2023-09-06
网络出版日期: 2023-09-13
基金资助
国家自然科学基金(61903033);中央高校基本科研业务费专项资金资助(2020MS116)
Multi-UAV cooperative path planning based on multi-index dynamic priority
Received date: 2023-04-04
Revised date: 2023-05-05
Accepted date: 2023-09-06
Online published: 2023-09-13
Supported by
National Natural Science Foundation of China(61903033);The Fundamental Research Funds for the Central Universities(2020MS116)
针对复杂城市环境下多无人机(UAVS)协同巡检、配送等任务,提出一种基于多指标动态优先级的协同路径规划方法,以节省运行成本和增加任务效率。综合考虑碰撞风险、总路程、等待时间等指标构建动态优先级模型,并在优先级单边避碰机制下,定制组合规避策略以处理局部冲突,更好地权衡协同规划效率和路径质量。针对无人机个体路径规划,在Lazy Theta*算法基础上引入拥堵权值地图,引导无人机避开拥堵区域,降低冲突发生可能性。对比仿真试验表明:提出的个体规划算法可以减少拥堵区域和降低拥堵持续时间,提出的多指标动态优先级协同规划算法相比于飞行时间驱动的动态优先级,能够提高规划效率和结果最优性。
王祝 , 张梦通 , 张振鹏 , 徐广通 . 基于多指标动态优先级的无人机协同路径规划[J]. 航空学报, 2024 , 45(4) : 328816 -328816 . DOI: 10.7527/S1000-6893.2023.28816
To save operation costs and increase efficiency for collaborative inspection, distribution, and other tasks of multiple Unmanned Aerial Vehicles (UAVs) in complex urban environments, a cooperative path planning method is proposed based on multi-index dynamic priority. A dynamic priority model is constructed through a comprehensive consideration of the indices such as collision risk, total distance, and waiting time. Under the priority-based unilateral collision avoidance mechanism, a combined avoidance strategy is customized to handle local conflicts, so as to balance the planning efficiency and route quality. For individual path planning, a congestion weighted map is introduced into the Lazy Theta* algorithm to guide UAV to avoid congested areas and reduce the conflict possibility. Comparative simulation experiments show that the proposed individual planning algorithm can reduce congestion areas and congestion duration, and the proposed multi-index dynamic priority cooperative planning algorithm can improve planning efficiency and route optimality compared to the flight-time driven dynamic priority.
1 | LI S, ZHANG H H, LI Z L, et al. An air route network planning model of logistics UAV terminal distribution in urban low altitude airspace[J]. Sustainability, 2021, 13(23): 13079. |
2 | LI K, NI W, TOVAR E, et al. On-board deep Q-network for UAV-assisted online power transfer and data collection[J]. IEEE Transactions on Vehicular Technology, 2019, 68(12): 12215-12226. |
3 | 杨旭, 王锐, 张涛. 面向无人机集群路径规划的智能优化算法综述[J]. 控制理论与应用, 2020, 37(11): 2291-2302. |
YANG X, WANG R, ZHANG T. Review of unmanned aerial vehicle swarm path planning based on intelligent optimization[J]. Control Theory & Applications, 2020, 37(11): 2291-2302 (in Chinese). | |
4 | XU C, XU M, YIN C J. Optimized multi-UAV cooperative path planning under the complex confrontation environment[J]. Computer Communications, 2020, 162: 196-203. |
5 | XU L, CAO X B, DU W B, et al. Cooperative path planning optimization for multiple UAVs with communication constraints[J]. Knowledge-Based Systems, 2023, 260: 110164. |
6 | MOHANAN M G, SALGOANKAR A. A survey of robotic motion planning in dynamic environments[J]. Robotics and Autonomous Systems, 2018, 100: 171-185. |
7 | CHUNG S J, PARANJAPE A A, DAMES P, et al. A survey on aerial swarm robotics[J]. IEEE Transactions on Robotics, 2018, 34(4): 837-855. |
8 | XU G T, CAO Y, SUN J L, et al. Real-time path generation for UAV swarms using receding planning framework and priority decoupling mechanism[C]∥ 2021 33rd Chinese Control and Decision Conference (CCDC). Piscataway: IEEE Press, 2021: 4338-4343. |
9 | 徐广通, 王祝, 曹严, 等. 动态优先级解耦的无人机集群轨迹分布式序列凸规划[J]. 航空学报, 2022, 43(2): 325059. |
XU G T, WANG Z, CAO Y, et al. Dynamic-priority-decoupled UAV swarm trajectory planning using distributed sequential convex programming[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(2): 325059 (in Chinese). | |
10 | VELAGAPUDI P, SYCARA K, SCERRI P. Decentralized prioritized planning in large multirobot teams[C]∥ 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2010: 4603-4609. |
11 | ERDMANN M, LOZANO-PéREZ T. On multiple moving objects[J]. Algorithmica, 1987, 2(1-4): 477-521. |
12 | DU L Z, KE S F, WANG Z, et al. Research on multi-load AGV path planning of weaving workshop based on time priority[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2277-2292. |
13 | ZHANG Y, WANG F L, FU F K, et al. Multi-AGV path planning for indoor factory by using prioritized planning and improved ant algorithm[J]. Journal of Engineering and Technological Sciences, 2018, 50(4): 534-547. |
14 | TAI R C, WANG J C, CHEN W D. A priori tized planning algorithm of trajectory coordination based on time windows for multiple AGVs with delay disturbance[J]. Assembly Automation, 2019, 39(05): 753-768. |
15 | GUNEY M ALI, RAPTIS I A. Dynamic prioritized motion coordination of multi-AGV systems[J]. Robotics and Autonomous Systems, 2021, 139: 103534. |
16 | LI H, LONG T, XU G T, et al. Coupling-degree-based heuristic prioritized planning method for UAV swarm path generation[C]∥ 2019 Chinese Automation Congress (CAC). Piscataway: IEEE Press, 2020: 3636-3641. |
17 | DANIEL K, NASH A, KOENIG S, et al. Theta*: Any-angle path planning on grids[J]. Journal of Artificial Intelligence Research, 2010, 39: 533-579. |
18 | NASH A, KOENIG S, TOVEY C. Lazy theta*: Any-angle path planning and path length analysis in 3D[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2010, 24(1): 147-154. |
19 | FARIA M, MARíN R, POPOVI? M, et al. Efficient lazy theta* path planning over a sparse grid to explore large 3D volumes with a multirotor UAV[J]. Sensors, 2019, 19(1): 174. |
20 | FARIA M, MAZA I, VIGURIA A. Applying frontier cells based exploration and lazy theta* path planning over single grid-based world representation for autonomous inspection of large 3D structures with an UAS[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1): 113-133. |
21 | 徐鹏飞, 丁延旭, 曹清波. 基于环境优化的无人艇全局路径规划研究[J]. 中国造船, 2022, 63(5): 206-220. |
XU P F, DING Y X, CAO Q B. Research on global path planning of unmanned surface vehicle based on environmental optimization[J]. Shipbuilding of China, 2022, 63(5): 206-220 (in Chinese). | |
22 | 张耀天, 张旭成, 贾明顺, 等. 基于层次分析法的自适应决策评价方法[J]. 北京航空航天大学学报, 2016, 42(5): 1065-1070. |
ZHANG Y T, ZHANG X C, JIA M S, et al. Adaptive evaluation method based on analytic hierarchy process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 1065-1070 (in Chinese). | |
23 | KIM C, KIM Y, YI H. Fuzzy analytic hierarchy process-based mobile robot path planning[J]. Electronics, 2020, 9(2): 290. |
/
〈 |
|
〉 |