面向反制无人机集群的多目标连续鲁棒跟踪算法
收稿日期: 2023-05-19
修回日期: 2023-07-20
录用日期: 2023-08-17
网络出版日期: 2023-09-01
基金资助
国家自然科学基金(61703287);辽宁省教育厅科学研究项目(LJKZ0218);沈阳市中青年科技创新人才项目(RC210401);沈阳航空航天大学引进人才科研启动基金(22YB03)
Multi-object continuous robust tracking algorithm for anti-UAV swarm
Received date: 2023-05-19
Revised date: 2023-07-20
Accepted date: 2023-08-17
Online published: 2023-09-01
Supported by
National Natural Science Foundation of China(61703287);Scientific Research Project of Liaoning Provincial Department of Education(LJKZ0218);Young and middle-aged Science and Technology Innovation Talents Project of Shenyang(RC210401);Doctoral Scientific Research Foundation of Shenyang Aerospace University(22YB03)
无人机(UAV)集群作战正朝着智能化、实战化迅猛发展,将在未来战场上造成巨大威胁,面向反制无人机集群的探测与跟踪研究势在必行。针对在复杂场景及远距离探测条件下无人机集群目标之间相互遮挡、无人机为弱小目标等原因造成的检测精度降低和跟踪精度降低问题,本文提出的无人机集群多目标(UAVS-MOT)连续鲁棒跟踪算法可以有效解决。UAVS-MOT模型基于FairMOT模型的多分支无锚框预测结构,将坐标注意力模块与DLA-34网络相结合,构建了全新的主干特征提取网络以提升特征信息的表达能力。此外,引入全新的ArcFace Loss损失函数进行训练以提高模型的收敛速度,并利用BYTE数据关联方法以降低目标漏检率和提高轨迹的连贯性。实验表明,本文提出的UAVS-MOT多目标跟踪算法在UAVSwarm Dataset上的多目标跟踪准确度(MOTA)和目标识别准确度(IDF1)分别为73.4%与76.1%,相比原有FairMOT算法分别提升5.7%与2.9%,可以解决目标的漏检、误检和跟踪精度低的问题,鲁棒性好。
王传云 , 苏阳 , 王琳霖 , 王田 , 王静静 , 高骞 . 面向反制无人机集群的多目标连续鲁棒跟踪算法[J]. 航空学报, 2024 , 45(7) : 329017 -329017 . DOI: 10.7527/S1000-6893.2023.29017
Unmanned Aerial Vehicle (UAV) swarm warfare is rapidly developing towards intelligence and practicality, which will pose a huge threat on the future battlefield. Therefore, research on detection and tracking of anti-UAV swarm is imperative. To solve the problems of reduced detection and tracking accuracy caused by mutual occlusion between UAV swarm and weak targets in complex scenes and long-distance detection conditions, this paper proposes a UAVS-Multiple Object Tracking (UAVS-MOT) multi-object continuous robust tracking algorithm. The UAVS-MOT model is based on the multi-branch anchor-free frame prediction structure of the FairMOT model. The coordinate attention module is combined with the DLA-34 network to construct a new backbone feature extraction network, so as to improve the expression ability of feature information. In addition, the new ArcFace Loss function is introduced for training to improve the convergence rate of the model, and the BYTE data association method is used to reduce the target miss rate and improve the track consistency. The experiment shows that the Multiple Object Tracking Accuracy (MOTA) and Identity F1 Score (IDF1) of the proposed algorithm on the UAVSwarm Dataset are 73.4% and 76.1%, respectively, which are 5.7% and 2.9% higher than those of the original FairMOT algorithm. The proposed method can solve the problems of missed and false detection of targets and low tracking accuracy, and has good robustness.
Key words: multiple object tracking; UAV swarm; FairMOT; attention mechanism; anti
1 | 刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望[J]. 航空学报, 2022, 43(S1): 726908. |
LIU L, LIU D W, WANG X G, et al. Development status and prospect of UAV cluster and anti-UAV cluster[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908 (in Chinese). | |
2 | 周末, 孙海文, 王亮, 等. 国外反无人机蜂群作战研究[J]. 指挥控制与仿真, 2023, 45(2): 24-30. |
ZHOU M, SUN H W, WANG L, et al. Research on foreign anti-UAV swarm warfare[J]. Command Control & Simulation, 2023, 45(2): 24-30 (in Chinese). | |
3 | 谢海斌, 闫家鼎, 庄东晔, 等. 无人机集群反制技术剖析[J]. 国防科技, 2021, 42(4): 10-16. |
XIE H B, YAN J D, ZHUANG D Y, et al. Analysis of countermeasures against the UAV swarm[J]. National Defense Technology, 2021, 42(4): 10-16 (in Chinese). | |
4 | 罗俊海, 王芝燕. 无人机探测与对抗技术发展及应用综述[J]. 控制与决策, 2022, 37(3): 530-544. |
LUO J H, WANG Z Y. A review of development and application of UAV detection and counter technology[J]. Control and Decision, 2022, 37(3): 530-544 (in Chinese). | |
5 | 龚轩, 乐孜纯, 王慧, 等. 多目标跟踪中的数据关联技术综述[J]. 计算机科学, 2020, 47(10): 136-144. |
GONG X, LE Z C, WANG H, et al. Survey of data association technology in multi-target tracking[J]. Computer Science, 2020, 47(10): 136-144 (in Chinese). | |
6 | HE Y H, WEI X, HONG X P, et al. Multi-target multi-camera tracking by tracklet-to-target assignment[J]. IEEE Transactions on Image Processing, 2020, 29: 5191-5205. |
7 | PENG J L, WANG C G, WAN F B, et al. Chained-tracker: Chaining paired attentive regression results for end-to-end joint multiple-object detection and tracking[C]∥European Conference on Computer Vision. Cham: Springer, 2020: 145-161. |
8 | BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]∥ 2016 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2016: 3464-3468. |
9 | VEERAMANI B, RAYMOND J W, CHANDA P. DeepSort: Deep convolutional networks for sorting haploid maize seeds[J]. BMC Bioinformatics, 2018, 19(S9): 289. |
10 | ZHANG Y F, SUN P Z, JIANG Y, et al. ByteTrack: Multi-object tracking by associating every detection box[C]∥European Conference on Computer Vision. Cham: Springer Cham, 2022: 1-21. |
11 | ZHANG Y F, WANG C Y, WANG X G, et al. FairMOT: On the fairness of detection and re-identification in multiple object tracking[J]. International Journal of Computer Vision, 2021, 129(11): 3069-3087. |
12 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]∥ 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 13708-13717. |
13 | DENG J K, GUO J, XUE N N, et al. ArcFace: Additive angular margin loss for deep face recognition[C]∥ 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 4685-4694. |
14 | YU F, WANG D Q, SHELHAMER E, et al. Deep layer aggregation[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2403-2412. |
15 | LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 936-944. |
16 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141. |
17 | WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional block attention module[C]∥ European Conference on Computer Vision. Cham: Springer, 2018: 3-19. |
18 | ZHOU X Y, KOLTUN V, KR?HENBüHL P. Tracking objects as points[M]∥ VEDALDI A, BISCHOF H, BROX T, et al, ed. Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 474-490. |
19 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7482-7491. |
20 | WANG C Y, SU Y, WANG J J, et al. UAVSwarm dataset: An unmanned aerial vehicle swarm dataset for multiple object tracking[J]. Remote Sensing, 2022, 14(11): 2601. |
21 | LEAL-TAIXé L, MILAN A, REID I, et al. MOTChallenge 2015: Towards a benchmark for multi-target tracking[DB/OL]. arXiv preprint: 1504.01942, 2015. |
22 | BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: The CLEAR MOT metrics[J]. Journal on Image and Video Processing, 2008, 2008: 1. |
23 | RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for Multi-target, multi-camera tracking[M]∥ Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 17-35. |
24 | LI Y, HUANG C, NEVATIA R. Learning to associate: Hybrid Boosted multi-target tracker for crowded scene[C]∥ 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2009: 2953-2960. |
/
〈 |
|
〉 |