流体力学与飞行力学

等离子体合成射流激励器阵列破除翼前缘三维冰特性

  • 程盼 ,
  • 景向嵘 ,
  • 罗振兵 ,
  • 高天翔 ,
  • 周岩 ,
  • 邓雄 ,
  • 孙乾
展开
  • 1.国防科技大学 空天科学学院,长沙 410073
    2.中国空气动力研究与发展中心 结冰与防除冰重点实验室,绵阳 621000

收稿日期: 2023-06-06

  修回日期: 2023-06-26

  录用日期: 2023-07-15

  网络出版日期: 2023-08-11

基金资助

中国空气动力研究与发展中心结冰与防除冰重点实验室基金(IADL20220410);湖南省自然科学基金(2021JJ40672);国家自然科学基金(12002377);国家科技重大专项(J2019-Ⅲ-0010-0054);沈阳市飞机结冰与防除冰重点实验室基金(YL2022XFX03)

Characteristics of 3D ice breaking on leading edge of wing by plasma synthetic jet actuator array

  • Pan CHENG ,
  • Xiangrong JING ,
  • Zhenbing LUO ,
  • Tianxiang GAO ,
  • Yan ZHOU ,
  • Xiong DENG ,
  • Qian SUN
Expand
  • 1.College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
    2.Key Laboratory of Icing and Anti/De-icing,China Aerodynamics Research and Development Center,Mianyang 621000,China

Received date: 2023-06-06

  Revised date: 2023-06-26

  Accepted date: 2023-07-15

  Online published: 2023-08-11

Supported by

The Foundation of Key Laboratory of Icing and Anti/De-icing of CARDC(IADL20220410);Natural Science Foundation of Hunan Province(2021JJ40672);National Natural Science Foundation of China(12002377);National Science and Technology Major Project (J2019-Ⅲ-0010-0054);Shenyang Key Laboratory of Aircraft Icing and Ice Protection Foundation(YL2022XFX03)

摘要

无人机结冰将严重影响其安全性,机翼前缘更容易结冰及积冰,对无人机气动性能影响更为严重,而机翼前缘结冰形状具有三维特性,亟须发展有效破除机翼前缘三维冰的低能耗、快响应除冰技术。分别根据NACA0012、NACA0018及NACA0024 3种翼型前缘曲率制作了3种不同弧度的冰型,基于等离子体合成射流激励器响应快、能耗低、射流强度高等优点,开展了单个及阵列布置激励器破除三维形态冰特性研究,分析了45°和90°两种不同方向出口对破冰特性的影响,阐明了等离子体合成射流激励器的破除冰机理及规律。结果表明:放电总能量为16.66 J时,在单个激励器作用下,对于翼前缘类似NACA0012的曲率半径较小的冰,射流冲击应力易在前缘驻点处集中,在翼前缘驻点线处能产生长达20 cm的贯穿裂纹,从而实现有效破除冰;对于曲率半径较大的冰,破冰半径约5 cm。保持放电总能量16.66 J不变,激励器采用沿驻点线的“一字型”阵列布置时对3种弧度的冰都能产生贯穿裂纹实现破除冰,表明激励器阵列能有效拓展破除冰面积,具备低能耗、大面积破除冰能力。研究成果可为无人机低能耗、大面积破除冰提供理论及实践参考。

本文引用格式

程盼 , 景向嵘 , 罗振兵 , 高天翔 , 周岩 , 邓雄 , 孙乾 . 等离子体合成射流激励器阵列破除翼前缘三维冰特性[J]. 航空学报, 2024 , 45(12) : 129137 -129137 . DOI: 10.7527/S1000-6893.2023.29137

Abstract

Icing on Unmanned Aerial Vehicles will seriously affect their aerodynamic performance, particularly that on the wing leading edge which is more likely to occur and accumulate. In addition, the shape of icing on the wing leading edge is three-dimensional, making it urgent to develop low energy consumption and fast-response anti-icing technology to effectively remove the ice. According to the leading edge curvature of NACA0012, NACA0018 and NACA0024 airfoils, three ice shapes with different radians were fabricated. The characteristics of breaking three-dimensional ice shapes by single and array actuators were studied based on the advantages of fast response, low energy consumption and high jet strength of plasma synthetic jet actuators. The effect of outlets at 45° and 90° on the ice-breaking characteristics was analyzed, and the ice-breaking mechanism and rule of plasma synthetic jet actuators were clarified. The results show that, when the total discharge energy reaches 16.66 J, under the effect of a single actuator, for ice similar to NACA0012 with a small curvature radius on the wing leading edge, the jet impact stress is prone to concentration at the front vertex, and can produce through cracks up to 20 cm at the wing leading edge stagnation point line to realize effective ice breaking, while for ice with larger curvature radiuses, the ice breaking radius is about 5 cm; when the total discharge energy is kept constant at 16.66 J, the “single line” array arrangement near the stagnation point line of the actuator can produce through cracks for ice of three arcs to achieve ice breaking, indicating that the exciter array can effectively expand the ice breaking area with the ability to break ice in a large area with low energy consumption.The research results can provide theoretical and practical reference for UAVs with low energy consumption and large area icebreaking capability.

参考文献

1 PLUMMER D M, G?KE S, RAUBER R M, et al. Discrimination of mixed-versus ice-phase clouds using dual-polarization radar with application to detection of aircraft icing regions[J]. Journal of Applied Meteorology and Climatology201049(5): 920-936.
2 JANJUA Z A, TURNBULL B, HIBBERD S, et al. Mixed ice accretion on aircraft wings[J]. Physics of Fluids201830(2): 027101.
3 CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics200335: 11-21.
4 LIU Y, LI L K, CHEN W L, et al. An experimental study on the aerodynamic performance degradation of a UAS propeller model induced by ice accretion process[J]. Experimental Thermal and Fluid Science2019102: 101-112.
5 AOPA. Aircraft icing [EB/OL]. (1998-03-05)[2024-03-11]. .
6 AOPA. AOPA air safety institute accident report[EB/OL]. (2023-11-16)[2024-03-11]. .
7 POTAPCZUKM G, BERKOWITZB M. Experimental investigation of multielement airfoil ice accretion and resulting performance degradation[J]. Journal of Aircraft199027(8): 679-691.
8 陈勇, 孔维梁, 刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战[J]. 航空学报202344(1): 626973.
  CHEN Y, KONG W L, LIU H. Challenge of aircraft design under operational conditions of supercooled large water droplet icing[J]. Acta Aeronautica et Astronautica Sinica202344(1): 626973 (in Chinese).
9 CHEN B, WANG L W. Simulation and research of aircraft deicing fluids deicing process[J]. Applied Mechanics and Materials2011121-126: 4695-4699.
10 ORNITZ S E. A mixed integer nonlinear programming model to optimize the use of aircraft deicing and anti-icing fluids[D]. Boca Raton: Florida Atlantic University, 2009:12-21.
11 ALBRIGHT A. A summary of NASA’s research on the fluid ice protection system[C]∥ Proceedings of the 23rd Aerospace Sciences Meeting. Reston: AIAA, 1985.
12 GRIFFITHS R. Investigation of leading edge ice accretion with cyclical pneumatic boot inflation[C]∥ 31st Aerospace Sciences Meeting. Nevada: ARC, 1993.
13 SOMMERWERK H, HORST P, BANSMER S. Studies on electro impulse de-icing of a leading edge structure in an icing wind tunnel[C]∥ Proceedings of the 8th AIAA Atmospheric and Space Environments Conference. Reston: AIAA, 2016.
14 HASLIM L A, LEE R D. Electro-expulsive separation system: US4690353[P]. 1987-09-01.
15 RHEE D H, YOON P H, CHO H H. Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air[J]. International Journal of Heat and Mass Transfer200346(6): 1049-1061.
16 PELLISSIER M, HABASHI W, PUEYO A. Design optimization of hot-air anti-icing systems by FENSAP-ICE[C]∥ Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
17 胡林权. 民用飞机机翼电加热防/除冰应用现状及技术难点[J]. 航空科学技术201627(7): 8-11.
  HU L Q. Application status and technical difficulties for civil aircraft wing electrothermal anti-/de-icing[J]. Aeronautical Science & Technology201627(7): 8-11 (in Chinese).
18 PETRENKO V F, SULLIVAN C R, KOZLYUK V, et al. Pulse electro-thermal de-icer (PETD)[J]. Cold Regions Science and Technology201165(1): 70-78.
19 田苗, 宋慧敏, 梁华, 等. 介质阻挡放电等离子体防除冰实验研究[J]. 化工学报201970(11): 4247-4256.
  TIAN M, SONG H M, LIANG H, et al. Experimental study on DBD discharge plasma for anti-icing and de-icing[J]. CIESC Journal201970(11): 4247-4256 (in Chinese).
20 贾宇豪, 梁华, 魏彪, 等. 基于介质阻挡放电的等离子体除冰实验研究[J]. 高电压技术202147(7): 2615-2623.
  JIA Y H, LIANG H, WEI B, et al. Experimental investigation of plasma deicing based on dielectric barrier discharge[J]. High Voltage Engineering202147(7): 2615-2623 (in Chinese).
21 周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报202243(3): 025027.
  ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: Review[J]. Acta Aeronautica et Astronautica Sinica202243(3): 025027 (in Chinese).
22 孟宣市, 惠伟伟, 易贤, 等. AC-SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报202240(2): 31-49.
  MENG X S, HUI W W, YI X, et al. Anti-/De-icing by AC-SDBD plasma actuators: Status and outlook[J]. Acta Aerodynamica Sinica202240(2): 31-49 (in Chinese).
23 MENG X S, HU H Y, LI C, et al. Mechanism study of coupled aerodynamic and thermal effects using plasma actuation for anti-icing[J]. Physics of Fluids201931(3): 037103.
24 CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids201758(8): 102.
25 谢理科, 梁华, 吴云, 等. 等离子体激励与电加热式防冰性能对比[J]. 航空学报202344(1): 627971.
  XIE L K, LIANG H, WU Y, et al. Comparison of anti-icing performance between plasma actuation and electric heating[J]. Acta Aeronautica et Astronautica Sinica202344(1): 627971 (in Chinese).
26 WU Y, WEI B, LIANG H, et al. Flight safety oriented ice shape modulation using distributed plasma actuator units[J]. Chinese Journal of Aeronautics202134(10): 1-5.
27 WEI B, WU Y, LIANG H, et al. Performance and mechanism analysis of nanosecond pulsed surface dielectric barrier discharge based plasma deicer[J]. Physics of Fluids201931(9): 091701.
28 赵彬彬, 董威, 刘娟, 等. 等离子体射流防冰性能实验研究I.DBD-PA参数化分析及防冰效果验证[J]. 上海交通大学学报201852(8): 924-929.
  ZHAO B B, DONG W, LIU J, et al. Experimental study on the anti-icing performance of plasma jet I. Parametric analysis of DBD-PA and verification on the anti-icing performance[J]. Journal of Shanghai Jiao Tong University201852(8): 924-929 (in Chinese).
29 赵彬彬, 董威, 张屹. 等离子体射流防冰性能实验研究Ⅱ.流向和展向布置DBD-PA防冰性能比较[J]. 上海交通大学学报201852(11): 1532-1536.
  ZHAO B B, DONG W, ZHANG Y. Experimental study on the anti-icing performance of plasma jet Ⅱ. Comparison of anti-icing performance using streamwise and spanwise DBD-PA[J]. Journal of Shanghai Jiao Tong University201852(11): 1532-1536 (in Chinese).
30 GROSSMAN K, BOHDAN C, VANWIE D. Sparkjet actuators for flow control[C]∥ Proceedings of the 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
31 CYBYK B, GROSSMAN K, VAN WIE D. Computational assessment of the SparkJet flow control actuator[C]∥ Proceedings of the 33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003.
32 WANG L, XIA Z X, LUO Z B, et al. Three-electrode plasma synthetic jet actuator for high-speed flow control[J]. AIAA Journal201452(4): 879-882.
33 周岩, 刘冰, 王林, 等. 串联式等离子体合成射流激励器放电及流场特性实验研究[C]∥第十届全国实验流体力学学术会议.上海:中国力学学会, 2016.
  ZHOU Y, LIU B, WANG L, et al. Experimental study on discharge and flow field characteristics of cascade plasma synthetic jet exciter [C]∥ 10th National Conference on Experimental Fluid Mechanics. Shanghai: CSTAM, 2016 (in Chinese).
34 ZHOU Y, XIA Z X, LUO Z B, et al. Experimental characteristics of a two-electrode plasma synthetic jet actuator array in serial[J]. Chinese Journal of Aeronautics201831(12): 2234-2247.
35 GAO T X, LUO Z B, ZHOU Y, et al. Novel deicing method based on plasma synthetic jet actuator[J]. AIAA Journal202058(9): 4181-4188.
36 GAO T X, LUO Z B, ZHOU Y, et al. Experimental investigation on ice-breaking performance of a novel plasma striker[J]. Chinese Journal of Aeronautics202235(1): 307-317.
37 景向嵘, 程盼, 罗振兵, 等. 电弧放电激励器破除冰特性及裂纹扩展规律[J]. 航空学报202243(): 727765.
  JING X R, CHENG P, LUO Z B, et al. Characteristics of breaking ice and crack propagation law by arc discharge exciter[J]. Acta Aeronautica et Astronautica Sinica202243(S2): 727765 (in Chinese).
文章导航

/