专栏

美军发展MQ-25A舰载无人加油机的动因及启示

  • 郑震山 ,
  • 何肇雄 ,
  • 李翀伦 ,
  • 张健 ,
  • 高鹏
展开
  • 192728部队,上海 200436
    2.航空工业沈阳飞机设计研究所,沈阳 110035
    3.航空工业成都飞机工业(集团)有限责任公司,成都 610073
.E-mail: hezhaoxiong@vip.qq.com

收稿日期: 2023-04-03

  修回日期: 2023-05-21

  录用日期: 2023-07-22

  网络出版日期: 2023-08-11

基金资助

省部级项目

Motivation and inspiration for U.S.military developing MQ-25A carrier-based aerial-refueling UAS

  • Zhenshan ZHENG ,
  • Zhaoxiong HE ,
  • Chonglun LI ,
  • Jian ZHANG ,
  • Peng GAO
Expand
  • 1.Unit 92728 of PLA,Shanghai 200436,China
    2.AVIC Shenyang Aircraft Design and Research Institute,Shenyang 110035,China
    3.AVIC Chengdu Aircraft Industrial (Group) CO. ,LTD. ,Chengdu 610073,China

Received date: 2023-04-03

  Revised date: 2023-05-21

  Accepted date: 2023-07-22

  Online published: 2023-08-11

Supported by

Provincial and Ministerial Level Project

摘要

美军正在研制MQ-25A舰载无人加油机,即将开启航母舰载机联队无人化的时代。按照时间轴并区分项目,梳理了美军自2000年起发展航母舰载无人机的历程。根据MQ-25A无人机公开信息分析,通过工程估算量化评估了其典型任务能力。对照美作战目标,从作战需求、经费预算、竞争择优、渐进发展、体系增效等方面分析了其发展舰载无人加油机的原因。结合实际,从发展目标、发展途径、关注要点等方面提出相关启示,为中国类似装备建设发展提供参考。

本文引用格式

郑震山 , 何肇雄 , 李翀伦 , 张健 , 高鹏 . 美军发展MQ-25A舰载无人加油机的动因及启示[J]. 航空学报, 2023 , 44(20) : 628797 -628797 . DOI: 10.7527/S1000-6893.2023.28797

Abstract

The US military is developing the MQ-25A carrier-based aerial-refueling UAS, which is about to open the era of unmanned aircraft carrier air wings. According to the time axis and the differentiation of projects, the history of the development of carrier-borne UAVS by the US military since 2000 is reviewed. Based on the analysis of public information of MQ-25A UAV, the typical mission capability of MQ-25A is quantitatively evaluated by engineering estimation. In this paper, the reasons for developing carrier-based aerial-refueling UAS are analyzed from the aspects of operational requirements, budget, competitive selection, progressive development and system efficiency. Based on the actual situation, this paper puts forward some inspirations from the aspects of development goals, development approaches and key points of concern, and provides references for the construction and development of similar equipment in China.

参考文献

1 杨爱民, 陶丹. 国外舰载固定翼无人机发展趋势[J]. 飞机设计202242(6): 38-42.
  YANG A M, TAO D. Discussion on the development trend of shipborne fixed-wing UAVs abroad[J]. Aircraft Design202242(6): 38-42 (in Chinese).
2 李明. 美国海军舰载无人空中加油系统项目及动力[J]. 航空动力2018(2): 40-44.
  LI M. U.S.Navy carrier-based unmanned tanker MQ-25 and it’s engine selection[J]. Aerospace Power2018(2): 40-44 (in Chinese).
3 陈黎. 美海军无人作战飞机系统验证项目取得新进展[J]. 国防科技工业2013(9): 66-67.
  CHEN L. New progress has been made in the verification project of unmanned combat aircraft system in the US Navy[J]. Defence Science & Technology Industry2013(9): 66-67 (in Chinese).
4 沈林成, 朱华勇, 牛轶峰. 从X-47B看美国无人作战飞机发展[J]. 国防科技201334(5): 28-36.
  SHEN L C, ZHU H Y, NIU Y F. A survey of unmanned combat aircraft system development from X-47B[J]. National Defense Science & Technology201334(5): 28-36 (in Chinese).
5 杨王诗剑. X-47B的落幕说明了什么?[J]. 兵器知识2017(5): 48-51.
  YANG W S J. What does the end of the X-47B show?[J]. Ordnance Knowledge2017(5): 48-51 (in Chinese).
6 朱超磊. 美军MQ-25A舰载无人加油机研制历程及影响分析[J]. 国防科技工业2021(5): 61-65.
  ZHU C L. Development course and influence analysis of MQ-25A unmanned tanker on board of US Army[J]. Defence Science & Technology Industry2021(5): 61-65 (in Chinese).
7 李磊, 徐月, 蒋琪, 等. 2018年国外军用无人机装备及技术发展综述[J]. 战术导弹技术2019(2): 1-11.
  LI L, XU Y, JIANG Q, et al. New development trends of military UAV equipment and technology in the world in 2018[J]. Tactical Missile Technology2019(2): 1-11 (in Chinese).
8 陈玉洁, 周军. 从X-47B到MQ-25看无人机及其动力发展[J]. 航空动力2020(2): 17-20.
  CHEN Y J, ZHOU J. From X-47B to MQ-25: Development of UAVs and their powerplants[J]. Aerospace Power2020(2): 17-20 (in Chinese).
9 XIONG H, HU J, DIAO X M. Optimize energy efficiency of quadrotors via arm rotation[J]. Journal of Dynamic Systems, Measurement, and Control2019141(9): 091002.
10 Defense Inside. Boeing wins $ 805 million Pentagon contract for MQ-25 Stingra[EB/OL]. (2018-08-30)[2023-03-23]. .
11 USNI. Navy picks boeing to build MQ-25A stingray carrier-based drone[EB/OL]. (2018-08-30)[2023-03-23]. .
12 陈松云, 王达, 戚艳嘉. 美舰载无人机MQ-25航母适配性研究[J]. 舰船科学技术201941(9): 154-157.
  CHEN S Y, WANG D, QI Y J. Research on U.S. aircraft carrier adaptability of ship-borne un-manned aerial vehicle MQ-25[J]. Ship Science and Technology201941(9): 154-157 (in Chinese).
13 王国栋, 刘绍辉, 韩杰. 美舰载无人加油机方案与关键技术分析[C]∥第九届中国航空学会青年科技论坛论文集. 北京: 中国航空学会, 2020: 1023-1030.
  WANG G D, LIU S H, HAN J. Technology proposals and critical technologies of US carrier unmanned tanker[C]∥Proceedings of the 9th China Aeronautical Society Youth Science and Technology Forum. Beijing: Chinese society of aeronautics and astronautics, 2020: 1023-1030 (in Chinese).
14 张斌. MQ-25舰载无人加油机项目竞标分析[J]. 国际航空2018(10): 25-28.
  ZHANG B. Analysis of bidding for MQ-25 carrier-borne unmanned refueling aircraft project[J]. International Aviation2018(10): 25-28 (in Chinese).
15 EHRHARD T P, Range ROBERT O., persistence, stealth, and networking: The case for a carrier-based unmanned combat air system[R]. Washington, D. C.: CSBA, 2008.
16 USNI. Navy releases final MQ-25A stingray RFP; General atomics bid revealed[EB/OL]. (2017-10-10)[2023-03-23]. .
17 门金柱, 王建国. 美军航母舰载无人机发展目标的调整及分析[J]. 飞航导弹2016(12): 14-15, 59.
  MEN J Z, WANG J G. Adjustment and analysis of the development goal of U.S. aircraft carrier-borne UAV[J]. Aerodynamic Missile Journal2016(12): 14-15, 59 (in Chinese).
18 孙明月, 于宪钊. 美国海军舰载机联队未来建设重点[J]. 军事文摘2020(1): 47-50.
  SUN M Y, YU X Z. Key points of future construction of US Navy carrier-based aircraft wing[J]. Military Digest2020(1): 47-50 (in Chinese).
19 GAO. GAO analysis of department of defense data: GAO-17-647[R]. Washington, D. C.: GAO, 2017.
20 BRYAN C, ADAM L, PETERH, et al. Regaining the high ground at sea: Transforming the U.S. navy’s carrier air wing for great power competition[EB/OL]. (2018-12-14)[2023-03-23]. .
21 王永庆. 固定翼舰载战斗机关键技术与未来发展[J]. 航空学报202142(8): 525859.
  WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica202142(8): 525859 (in Chinese).
22 周胜明. 航母甲板运动对舰载机着舰影响仿真分析[J]. 飞机设计201232(6): 28-32.
  ZHOU S M. Simulation analysis on influence of carrier deck motion on carrier-based aircraft landing[J]. Aircraft Design201232(6): 28-32 (in Chinese).
23 于瀛. 影响舰载机着舰的环境因素[J]. 现代舰船2012(2): 26-27.
  YU Y. Environmental factors affecting carrier-based aircraft landing[J]. Modern Ships2012(2): 26-27 (in Chinese).
24 郭润兆, 张宏, 张健. 舰载机布局的机舰适配性设计研究[J]. 航空科学技术201425(6): 5-8.
  GUO R Z, ZHANG H, ZHANG J. The study on configuration adaptive design of carrier-based aircraft[J]. Aeronautical Science & Technology201425(6): 5-8 (in Chinese).
25 王永庆, 罗云宝, 王奇涛, 等. 面向机舰适配的舰载飞机起降特性分析[J]. 航空学报201637(1): 269-277.
  WANG Y Q, LUO Y B, WANG Q T, et al. Carrier suitability-oriented launch and recovery characteristics of piloted carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica201637(1): 269-277 (in Chinese).
26 田晓地. F-35战斗机经济可承受性问题的启示[J]. 价值工程201534(23): 203-206.
  TIAN X D. Enlightenment of economic affordability issues of F-35 fighter[J]. Value Engineering201534(23): 203-206 (in Chinese).
27 杨涛, 药红红, 陈星星. F-35战斗机任务系统研制试验综合分析[J]. 飞航导弹2021(2): 46-52.
  YANG T, YAO H H, CHEN X X. Comprehensive analysis of development and test of F-35 fighter mission system[J]. Aerodynamic Missile Journal2021(2): 46-52 (in Chinese).
28 李明. 美国新重型直升机CH-53K接近形成初始作战能力[J]. 航空动力2019(6): 25-28.
  LI M. U.S marine’s new heavy lift helicopter CH-53K approaching IOC[J]. Aerospace Power2019(6): 25-28 (in Chinese).
29 COLIN B. X-47B head to sea[EB/OL]. (2013-02-04)[2023-03-23]. .
30 贾高伟, 郭正. 国外隐身无人机的发展[J]. 国防科技201940(2): 13-16.
  JIA G W, GUO Z. The development of the foreign stealth UAV[J]. National Defense Technology201940(2): 13-16 (in Chinese).
31 阴鹏, 贾高伟, 杨希祥. 外军无人机隐身设计发展研究[J]. 飞航导弹2021(12): 69-74.
  YIN P, JIA G W, YANG X X. Research on stealth design development of foreign military UAV[J]. Aerodynamic Missile Journal2021(12): 69-74 (in Chinese).
文章导航

/