一种新的基于可解释性置信规则库的飞轮健康状态评估模型
收稿日期: 2022-05-02
修回日期: 2022-05-23
录用日期: 2022-06-13
网络出版日期: 2022-06-27
基金资助
中国博士后科学基金(2020M683736);黑龙江省自然科学基金项目(LH2021F038);黑龙江省大学生创新实践项目(202010231009);哈尔滨师范大学研究生质量培养提升工程项目(1504120015);哈尔滨 师范大学研究生学术创新项目(HSDSSCX2021-120)
A new flywheel health status assessment model based on explicable belief rule base
Received date: 2022-05-02
Revised date: 2022-05-23
Accepted date: 2022-06-13
Online published: 2022-06-27
飞轮系统的稳定运行对于航天器在轨安全影响重大,因而对飞轮系统进行健康状态评估至关重要。在进行飞轮系统健康状态评估建模时,不仅要求模型能够处理各种不确定性以保障评估结果的准确性,同时要求其具有透明合理的评估过程与可解释、可追溯的评估结果。因此,在深入研究置信规则库(BRB)建模方法的基础上,构建了一种新的基于可解释性建模的置信规则库(BRB-e)飞轮系统健康状态评估模型。首先,结合飞轮系统特征对模型的可解释性建模准则进行定义;在此基础上,设计了BRB-e评估模型的推理过程;然后,基于鲸鱼优化算法(WOA),提出了一种具有可解释性约束的BRBBRB-ee模型参数优化方法;最后,通过对某飞轮系统中轴承组件的评估案例研究,验证了模型在飞轮系统健康状态评估中的有效性。对比研究表明,BRBBRB-ee模型在评估结果准确性和评估过程可解释性方面具有一定的优势。
程晓玉 , 韩鹏 , 贺维 , 张朋 , 韩晓霞 , 李英梅 , 曹友 . 一种新的基于可解释性置信规则库的飞轮健康状态评估模型[J]. 航空学报, 2023 , 44(S1) : 172 -184 . DOI: 10. 7527/S1000-6893. 2022. 27496
The stable operation of the flywheel system has a great impact on the on-orbit safety of spacecraft, so it is very important to assess the health status of the flywheel system. When modeling the flywheel system health status assessment, it is required that the model not only deals with various uncertainties to ensure the accuracy of assessment results, but also has a transparent and reasonable assessment process and explicable and traceable assessment results. Therefore, based on the modeling method of Belief Rule Base (BRB), a new explicable Belief Rule Base (BRB-e) flywheel system health assessment model based on explicable modeling is constructed. Firstly, explicable modeling criteria are defined according to the characteristics of flywheel system. On this basis, the reasoning process of BRB-e assessment model is designed. Then, based on the Whale Optimization Algorithm (WOA), a parameter optimization method of BRB-e model with explicable constraints is proposed. Finally, the effectiveness of the model for flywheel system health status assessment is verified by a case study of the bearing components in a flywheel system. The comparative study shows that the BRB-e model proposed has certain advantages in accuracy of assessment results and explainability of the assessment process.
1 | GHANAATIAN M, LOTFIFARD S. Control of flywheel energy storage systems in the presence of uncertainties[J]. IEEE Transactions on Sustainable Energy, 2019, 10(1): 36-45. |
2 | SUN X D, SU B K, WANG S H, et al. Performance analysis of suspension force and torque in an IBPMSM with V-shaped PMs for flywheel batteries[J]. IEEE Transactions on Magnetics, 2018, 54(11): 1-4. |
3 | ZHOU Z J, CAO Y, HU G Y, et al. New health-state assessment model based on belief rule base with interpretability[J]. Science China Information Sciences, 2021, 64(7): 172214. |
4 | 孙同敏. 基于DBN-SVM的航空发动机健康状态评估方法[J]. 控制工程, 2021, 28(6): 1163-1170. |
SUN T M. Research on aero engine health state assessment using DBN and SVM[J]. Control Engineering of China, 2021, 28(6): 1163-1170 (in Chinese). | |
5 | 尹爱军, 王昱, 戴宗贤, 等. 基于变分自编码器的轴承健康状态评估[J]. 振动、测试与诊断, 2020, 40(5): 1011-1016, 1030. |
YIN A J, WANG Y, DAI Z X, et al. Evaluation method of bearing health state based on variational auto-encoder[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(5): 1011-1016, 1030 (in Chinese). | |
6 | XU J. Health assessment of young students based on decision Tree-BP model[J]. Journal of Nonlinear and Convex Analysis, 2019, 20(5): 977-986. |
7 | YANG J B, LIU J, WANG J, et al. Belief rule-base inference methodology using the evidential reasoning approach-RIMER[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 2006, 36(2): 266-285. |
8 | YANG J B, XU D L. Evidential reasoning rule for evidence combination[J]. Artificial Intelligence, 2013, 205: 1-29. |
9 | CAO Y, ZHOU Z J, HU C H, et al. On the interpretability of belief rule-based expert systems[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3489-3503. |
10 | 周志杰, 曹友, 胡昌华, 等. 基于规则的建模方法的可解释性及其发展[J]. 自动化学报, 2021, 47(6): 1201-1216. |
ZHOU Z J, CAO Y, HU C H, et al. The interpretability of rule-based modeling approach and its development[J]. Acta Automatica Sinica, 2021, 47(6): 1201-1216 (in Chinese). | |
11 | GAO Y, LIU X Y, XIANG J W. FEM simulation-based generative adversarial networks to detect bearing faults[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4961-4971. |
12 | DENG X Y, JIANG W. Dependence assessment in human reliability analysis using an evidential network approach extended by belief rules and uncertainty measures[J]. Annals of Nuclear Energy, 2018, 117: 183-193. |
13 | CHENG X Y, LIU S S, HE W, et al. A model for flywheel fault diagnosis based on fuzzy fault tree analysis and belief rule base[J]. Machines, 2022, 10(2): 73. |
14 | HOSSAIN M S, AHMED F, FATEMA-TUJ-JOHORA, et al. A belief rule based expert system to assess tuberculosis under uncertainty[J]. Journal of Medical Systems, 2017, 41(3): 43. |
15 | 吴伟昆, 杨隆浩, 傅仰耿, 等. 基于加速梯度求法的置信规则库参数训练方法[J]. 计算机科学与探索, 2014, 8(8): 989-1001. |
WU W K, YANG L H, FU Y G, et al. Parameter training approach for belief rule base using the accelerating of gradient algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(8): 989-1001 (in Chinese). | |
16 | 苏群, 杨隆浩, 傅仰耿, 等. 基于变速粒子群优化的置信规则库参数训练方法[J]. 计算机应用, 2014, 34(8): 2161-2165, 2174. |
SU Q, YANG L H, FU Y G, et al. Parameter training approach based on variable particle swarm optimization for belief rule base[J]. Journal of Computer Applications, 2014, 34(8): 2161-2165, 2174 (in Chinese). | |
17 | CHANG L L, SUN J B, JIANG J, et al. Parameter learning for the belief rule base system in the residual life probability prediction of metalized film capacitor[J]. Knowledge-Based Systems, 2015, 73: 69-80. |
18 | YANG J B. Rule and utility based evidential reasoning approach for multiattribute decision analysis under uncertainties[J]. European Journal of Operational Research, 2001, 131(1): 31-61. |
19 | LI G L, ZHOU Z J, HU C H, et al. An optimal safety assessment model for complex systems considering correlation and redundancy[J]. International Journal of Approximate Reasoning, 2019, 104: 38-56. |
20 | LI Z M, BEJARBANEH B Y, ASTERIS P G, et al. A hybrid GEP and WOA approach to estimate the optimal penetration rate of TBM in granitic rock mass[J]. Soft Computing, 2021, 25(17): 11877-11895. |
21 | KONG D D, CHEN Y J, LI N, et al. Tool wear estimation in end milling of titanium alloy using NPE and a novel WOA-SVM model[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 5219-5232. |
22 | ZHAO H M, LIU H D, XU J J, et al. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4165-4172. |
23 | SONG H H, WEN H, HU L, et al. Secure cooperative transmission with imperfect channel state information based on BPNN[J]. IEEE Transactions on Vehicular Technology, 2018, 67(11): 10482-10491. |
/
〈 |
|
〉 |