超声速下盘缝带伞不同收口方式的气动特性
收稿日期: 2023-04-04
修回日期: 2023-06-11
录用日期: 2023-07-05
网络出版日期: 2023-07-14
基金资助
国家自然科学基金(12072377);湖南省自然科学基金(2022JJ30678)
Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways
Received date: 2023-04-04
Revised date: 2023-06-11
Accepted date: 2023-07-05
Online published: 2023-07-14
Supported by
National Natural Science Foundation of China(12072377);Natural Science Foundation of Hunan Province(2022JJ30678)
随着中国航天事业的发展,对大面积、高强度、低开伞力、低重量体积的高性能超声速降落伞的应用需求越来越突出。超声速收口技术是满足未来需求的一种可能的技术途径,但国内外在此领域的研究工作欠缺。本文以超声速盘缝带收口降落伞为研究对象,采用流固耦合的方法,对不同收口方式的不同收口比下的盘缝带伞的气动特性进行研究。结果表明,盘收口降落伞在呼吸时,盘的部分基本保持充满状态,带的部分发生不规则的膨胀和收缩。而带收口时,盘和带的部分则一起进行膨胀和收缩。对于收口的气动特性方面,盘收口的阻力系数和投影面积随着收口比的增大而增大,而带收口则没有明显变化。
代雨柔 , 李健 , 薛晓鹏 , 荣伟 . 超声速下盘缝带伞不同收口方式的气动特性[J]. 航空学报, 2024 , 45(7) : 128811 -128811 . DOI: 10.7527/S1000-6893.2023.28811
With the development of aerospace engineering, the demand for the application of high-performance supersonic parachute with large area, high strength, low opening shock, and low weight and volume is becoming more and more prominent. Supersonic reefing technology is a possible way to meet the future demand, but research in this field remains limited both domestically and internationally. This paper studies the aerodynamic characteristics of supersonic disk-gap-band parachute in different reefing ways and different reefing ratios using the fluid-structure interaction method. The results show that when the mid-gore reefing parachute breaths, the disk keeps full and the band part expands and contracts irregularly. However, for the skirt reefing parachute, the band and disk part expand and contract together. For the aerodynamic characteristics of the parachute reefing, the drag coefficient and the projected area of the mid-gore reefing grow with the increase of reefing ratio, but the skirt reefing shows no obvious change.
1 | 《降落伞技术导论》编写组. 降落伞技术导论[M]. 北京:国防工业出版社, 1977: 113-117. |
“Introduction to Parachute Technology” Writing Group. Introduction to parachute technology[M].Beijing: National Defense Industry Press, 1977: 113-117 (in Chinese). | |
2 | WITKOWSKI A, BRUNO R. Mars exploration rover parachute decelerator system program overview[C]∥Proceedings of the 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2003. |
3 | ADAMS D S, WITKOWSKI A, KANDIS M. Phoenix Mars Scout parachute flight behavior and observations[C]∥2011 IEEE Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8. |
4 | CRUZ J R, WAY D W, SHIDNER J D, et al. Reconstruction of the Mars science laboratory parachute performance[J]. Journal of Spacecraft and Rockets, 2014, 51(4): 1185-1196. |
5 | STEINBERG S Y, SIEMERS P M III, SLAYMAN R G. Velopment of the Viking parachute configuration by wind-tunnel investigation[J]. Journal of Spacecraft and Rockets, 1974, 11(2): 101-107. |
6 | 李健, 房冠辉, 吕智慧, 等. 天问一号火星探测器伞系减速分系统设计与验证[J]. 中国科学: 技术科学, 2022, 52(2): 264-277. |
LI J, FANG G H, Lü Z H, et al. Design and verification of parachute deceleration subsystem of Tianwen-1 Mars probe[J]. Scientia Sinica (Technologica), 2022, 52(2): 264-277 (in Chinese). | |
7 | 荣伟, 高树义, 李健, 等. 神舟飞船降落伞系统减速策略及其可靠性验证[J]. 中国科学: 技术科学, 2014, 44(3): 251-260. |
RONG W, GAO S Y, LI J, et al. The deceleration strategy and reliability validation of the parachute system on the Shenzhou spacecraft[J]. Scientia Sinica (Technologica), 2014, 44(3): 251-260 (in Chinese). | |
8 | PREISSER J S, GROW R B. High-altitude flight test of a reefed 12.2-meter-diameter disk-gap-band parachute with deployment at a Mach number of 2.58[R]. Washington, D.C.: NASA, 1971. |
9 | ECKSTROM C, BRANSCOME D R. High altitude flight test of a disk gap band parachute deployed behind a bluff body at a Mach number of 2.69[R]. Washington, D.C.: NASA, 1973. |
10 | WITKOWSKI A, KANDIS M. Reefing the Mars Science Laboratory parachute[C]∥2010 IEEE Aerospace Conference. Piscataway: IEEE Press, 2010: 1-6. |
11 | WITKOWSKI A, KANDIS M, REUTER J, et al. Design of subscale parachute models for MSL supersonic wind tunnel testing[C]∥Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
12 | 贾贺, 荣伟. ExoMars 2016火星探测计划进入、减速、着陆的验证任务分析[J]. 航天器工程, 2013, 22(4): 109-115. |
JIA H, RONG W. Review and analysis of EDL demonstrator module of ExoMars 2016 mission[J]. Spacecraft Engineering, 2013, 22(4): 109-115 (in Chinese). | |
13 | 余莉. 气动减速技术[M]. 北京: 科学出版社, 2018. |
YU L. Aerodynamic deceleration technology[M]. Beijing: Science Press, 2018 (in Chinese). | |
14 | 夏元清. 火星探测器进入、下降与着陆过程的导航、制导与控制—“恐怖”七分钟[M]. 北京: 科学出版社, 2017:34-38. |
XIA Y Q. Navigation, guidance and control of Mars rover entry, descent and landing—seven minutes of terror[M]. Beijing: Science Press, 2017:34-38 (in Chinese). | |
15 | HALL N. Mars atmosphere model[EB/OL]. (2021-05-13)[2021-07-27]. . |
16 | 刘凯欣, 王景焘, 王刚, 等. 时-空守恒元解元(CE/SE)方法综述[J]. 力学进展, 2011, 41(4): 447-461. |
LIU K X, WANG J T, WANG G, et al. A review on the CE/SE method[J]. Advances in Mechanics, 2011, 41(4): 447-461 (in Chinese). | |
17 | CHANG S C. The method of space-time conservation element and solution element—a new approach for solving the Navier-Stokes and Euler equations[J]. Journal of Computational Physics, 1995, 119(2): 295-324. |
18 | CHANG S C, WANG X Y, CHOW C Y. The space-time conservation element and solution element method: A new high-resolution and genuinely multidimensional paradigm for solving conservation laws[J]. Journal of Computational Physics, 1999, 156(1): 89-136. |
19 | 刘海涛, 徐建中. 求解Euler方程的空间—时间守恒格式[J]. 工程热物理学报, 1997, 18(3): 294-299. |
LIU H T, XU J Z. A space-time conservation scheme for solving the two-dimensional Euler equations[J]. Journal of Engineering Thermophysics, 1997, 18(3): 294-299 (in Chinese). | |
20 | 张德良, 谢巍, 郭长铭, 等. 气相爆轰胞格结构和马赫反射数值模拟[J]. 爆炸与冲击, 2001, 21(3): 161-167. |
ZHANG D L, XIE W, GUO C M, et al. Numerical simulation of cellar structures and Mach reflection of gaseous detonation waves[J]. Explosion and Shock Waves, 2001, 21(3): 161-167 (in Chinese). | |
21 | 张增产, 沈孟育. 改进的时空守恒元和解元方法[J]. 清华大学学报(自然科学版), 1997, 37(8): 67-70. |
ZHANG Z C, SHEN M Y. Improved space-time conservation element and solution element method[J]. Journal of Tsinghua University (Science and Technology), 1997, 37(8): 67-70 (in Chinese). | |
22 | 辛春亮, 朱星宇, 王凯, 等. LS-DYNA有限元建模、分析和优化设计[M]. 北京: 清华大学出版社, 2022. |
XIN C L, ZHU X Y, WANG K, et al. LS-DYNA finite element modeling, analysis and optimization design[M]. Beijing: Tsinghua University Press, 2022 (in Chinese). | |
23 | SOTIROPOULOS F, YANG X L. Immersed boundary methods for simulating fluid-structure interaction[J]. Progress in Aerospace Sciences, 2014, 65: 1-21. |
24 | 杨璐瑜, 张红英, 陆伟伟, 等. 盘缝带伞超声速开伞过程研究[J]. 航天返回与遥感, 2016, 37(3): 29-38. |
YANG L Y, ZHANG H Y, LU W W, et al. Study on the deployment of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery & Remote Sensing, 2016, 37(3): 29-38 (in Chinese). | |
25 | 杨璐瑜, 陆伟伟, 张红英, 等. 速度对火星用盘缝带伞超声速开伞性能影响[J]. 航空计算技术, 2016, 46(5): 34-37. |
YANG L Y, LU W W, ZHANG H Y, et al. Effect of velocity on performance of Mars disk-gap-band parachutes in supersonic flow[J]. Aeronautical Computing Technique, 2016, 46(5): 34-37 (in Chinese). | |
26 | 王祁, 曹义华. 盘-缝-带伞超声速充气过程仿真研究[J]. 航天返回与遥感, 2018, 39(1): 35-44. |
WANG Q, CAO Y H. Study on the simulation of the inflating process of disk-gap-band parachute in supersonic flow[J]. Spacecraft Recovery & Remote Sensing, 2018, 39(1): 35-44 (in Chinese). | |
27 | ADAMS D, RIVELLINI T. Mars science laboratory’s parachute qualification Approach[C]∥20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2009. |
28 | SONNEVELDT B S, CLARK I G, O’FARRELL C. Summary of the advanced supersonic parachute inflation research experiments (ASPIRE) sounding rocket tests with a disk-gap-band parachute[C]∥Proceedings of the AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
29 | CLINTON V E, JOHN S P. Flight test of a 40 foot nominal diameter disk-gap-band parachute deployed at a Mach number of 2.72 and a dynamic pressure of 9.7 pounds per square foot[R]. Washington, D.C.: NASA, 1968. |
/
〈 |
|
〉 |