流体力学与飞行力学

单级跨音压气机第1级可调静子在退喘过程中的气动力矩分析

  • 刘德龙 ,
  • 郭海宁 ,
  • 尹海宝 ,
  • 孟德君
展开
  • 中国航空发动机集团有限公司 沈阳发动机研究所,沈阳 110015
.E-mail: ldl020310323@sina.com

收稿日期: 2023-02-13

  修回日期: 2023-02-28

  录用日期: 2023-06-07

  网络出版日期: 2023-06-21

基金资助

国家级项目

Aerodynamic moment analysis of first stage variable stator vanes of single⁃stage transonic compressor in surge exit process

  • Delong LIU ,
  • Haining GUO ,
  • Haibao YIN ,
  • Dejun MENG
Expand
  • Shenyang Engine Research Institute,Aero-Engine Corporation of China,Shenyang 110015,China

Received date: 2023-02-13

  Revised date: 2023-02-28

  Accepted date: 2023-06-07

  Online published: 2023-06-21

Supported by

National Level Project

摘要

某单级跨音压气机在设计转速退喘过程中,第1级可调静子叶片(VSV)瞬间关闭且不受作动筒控制,从监控摄像头看到指示第1级可调静子角度状态的指针已经超出表盘关角度极限。紧接着第1级转子振幅增大,为退出该危险状态紧急降低压气机转速直至停车。为找出第1级可调静子异常关闭的原因,对其受到的气动力矩进行了分析。首先采用定常三维计算确定了第1级可调静子受到的气动力矩在压气机特性图上的分布,指出了气动力矩大的高风险三角区。其次通过三维非定常计算模拟了节气门快速打开后压气机流场以及气动力矩随时间的变化,揭示了可调静子异常关闭的原因。最后介绍了可避免这一危险情况的预防措施,这些措施在后续的单级压气机试验中被证明是有效的。

本文引用格式

刘德龙 , 郭海宁 , 尹海宝 , 孟德君 . 单级跨音压气机第1级可调静子在退喘过程中的气动力矩分析[J]. 航空学报, 2023 , 44(24) : 128550 -128550 . DOI: 10.7527/S1000-6893.2023.28550

参考文献

1 LI Y L, SAYMA A. Numerical investigation of VSVs Mal-Schedule effects in a three stage axial compressor: GT2014-25145[R]. New York: ASME, 2014.
2 BENSER W A. Aerodynamic design of axial-flow compressors, chapter XIII compressor operation with one or more blade rows stalled: NASA SP-36[R]. Washington, D.C.: NASA, 1965.
3 HOWE D C, MARCHANT R D. Energy efficient engine high-pressure compressor test hardware detailed design: NASA CR-180850[R]. Washington, D.C.: NASA, 1988.
4 HOLLOWAY P R, KNIGHT G L, KOCH C C, et al. Energy efficient engine high-pressure compressor detailed design report: NASA CR-165558[R]. Washington, D.C.: NASA; 1973.
5 唐智明, 詹孟萱. 高效节能发动机文集: 第三分册 风扇压气机设计与试验[M]∥ 北京: 航空工业出版社1991: 196.
  TANG Z M, ZHAN M X. Energy efficient engine collection of essays: Volume 3 fan and compressor design and test[M]∥ Beijing: Aviation Industry Press1991: 196 (in Chinese).
6 梁钧襄, 侯志兴. 高效节能发动机文集: 第八分册控制系统设计[M]∥ 北京: 航空工业出版社1991: 5-23.
  LIANG J X, HOU Z X. Energy efficient engine collection of essays: Volume 8 control system design[M]∥ Beijing: Aviation Industry Press1991: 5-23 (in Chinese).
7 刘太秋, 赵月振, 王咏梅, 等. 负荷系数0.5的高负荷单级轴流压气机设计及试验研究[J]. 航空发动机202248(5): 1-39.
  LIU T Q, ZHAO Y Z, WANG Y M, et al. Design and experimental investigation of a highly loaded single-stage axial compressor with loading coefficient of 0.5[J]. Aeroengine202248(5): 1-39 (in Chinese).
8 SCHULZE G, BLAHA C, HENNECKE D K. The performance of a new axial single stage transonic compressor: ISABE 95-7072[R]. Reston: AIAA, 1995.
9 PAULON J, BEDOT J C, ZHANG Z, et al. Design and test results of a high performance single stage compressor: ISABE 91-7071[R]. Reston: AIAA, 1991.
10 MOORE R D, REID L. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.63 and 1.78, respectively, and with design pressure ratio of 1.82: NASA N82-19222[R]. Washington, D.C.: NASA, 1982.
11 WADIA A R, SZUCS P N, CRALL D W. Inner workings of aerodynamic sweep[J]. Journal of Turbomachinery1998120(4): 671-682.
12 DARJI A P, ALONE D B, MISTRY C S. Flow studies on a single stage transonic axial flow compressor retrofitted with circumferential grooves and varied rotor-stator axial gap: GTINDIA2017-4592[R]. New York: ASME, 2017.
13 DINH C T, MA S B, KIM K Y. Effects of a circumferential feed-back channel on aerodynamic performance of a single-stage transonic axial compressor: GT2017-63536[R]. New York: ASME, 2017.
14 HAH C, HATHAWAY M, KATZ J. Investigation of unsteady flow field in a low-speed one and a half stage axial compressor: Effects of tip gap size on the tip clearance flow structure at near stall operation: GT2014-27094[R]. New York: ASME, 2014.
15 MAILACH R, MüLLER L, VOGELER K. Rotor-stator interactions in a four-stage low-speed axial compressor part II: Unsteady aerodynamic forces of rotor and stator blades: ASME GT2004-53099[R]. New York: ASME, 2004.
16 李绍斌, 苏杰先, 冯国泰, 等. 高负荷跨声速压气机动静叶干扰下叶片气动负荷研究[J]. 推进技术200627(5): 410-415.
  LI S B, SU J X, FENG G T, et al. Investigation of the unsteady aerodynamic blade loads in a highly loaded transonic compressor stage[J]. Journal of Propulsion Technology200627(5): 410-415 (in Chinese).
17 AOTSUKA M, WATANABE T, MACHINA Y. Role of shock and boundary layer separation on unsteady aerodynamic characteristics of oscillating transonic cascade: ASME GT2013- 38425[R]. New York: ASME, 2013.
18 RABE D, BOLCS A, RUSSLER P. Influence of inlet distortion on transonic compressor blade loading: AIAA- 1995-2461[R]. Reston: AIAA, 1995.
19 SAHAI V, CHENG D Y. New airfoil design to extend gas turbine compressor surge margin: ASME GT2003- 38209[R]. New York: ASME, 2003.
20 毛明明, 宋彦萍, 王仲奇. 弯掠动叶对跨声压气机非定常气动负荷的影响[J]. 工程热物理学报200829(12): 2033-2036.
  MAO M M, SONG Y P, WANG Z Q. Effect of curved rotor on unsteady aerodynamic loading in a transonic compressor[J]. Journal of engineering thermophysics200829(12): 2033-2036 (in Chinese).
21 张鑫. 核心机驱动风扇级的气动设计及其与下游部件的匹配[D]. 北京: 北京航空航天大学, 2011: 12-16.
  ZHANG X. Aerodynamic design of the CDFS and the matching of CDFS with downstream componets [D]. Beijing: Beijing University of Aeronautics and Astronautics, 2011: 12-16 (in Chinese).
文章导航

/