基于多星最差故障搜索的RAIM完好性风险估计方法
收稿日期: 2023-03-13
修回日期: 2023-04-06
录用日期: 2023-05-15
网络出版日期: 2023-05-18
基金资助
国家重点研发计划(2021YFB3901300);国家自然科学基金(61773132)
RAIM integrity risk estimation method based on worst multi⁃satellite faults searching
Received date: 2023-03-13
Revised date: 2023-04-06
Accepted date: 2023-05-15
Online published: 2023-05-18
Supported by
National Key Development Research and Program(2021YFB3901300);National Natural Science Foundation of China(61773132)
作为接收机自主完好性监测(RAIM)的核心功能,严格的完好性风险估计是保障导航定位可靠性的关键。全球导航卫星系统的互操作使得多星故障概率上升,导致传统基于单星最差故障偏差的完好性风险估计严格性降低。为此,提出顾及多星故障的完好性风险估计方法。多星故障完好性风险的严格估计受限于多星最差故障偏差的精确确定,针对此建立确定多星最差故障偏差的“两步法”,即通过最差故障单位向量的确定以及最差故障幅值的有界搜索,实现导航定位完好性风险的保守估计。采用星座仿真软件模拟卫星故障场景测试完好性风险估计方法的严格性。实验结果表明:与传统单星故障完好性风险估计方法相比,所提方法在多星座组合场景下可显著降低漏检比率。此外,与传统顾及多星座多星故障的高级RAIM相比,所提方法在全球范围内满足99.5%可用性指标的比例至多可提升9.42%。
关键词: 接收机自主完好性监测(RAIM); 完好性; 全球导航卫星系统; 多星故障; 可用性
李瑞杰 , 李亮 , 蒋家昌 , 程力 , 王柳淇 . 基于多星最差故障搜索的RAIM完好性风险估计方法[J]. 航空学报, 2024 , 45(2) : 328684 -328684 . DOI: 10.7527/S1000-6893.2023.28684
As the core function of Receiver Autonomous Integrity Monitoring (RAIM), strict integrity risk estimation is the key to accurately measure navigation and positioning integrity. The interoperation of global navigation satellite systems increases the probability of multi-satellite faults dramatically, which reduces the rigor of the traditional integrity risk estimation based on the worst fault bias of a single satellite. In this paper, an integrity risk estimation method considering multi-satellite faults is proposed. As the rigorous estimation of multi-satellite fault integrity risk is limited by the accurate determination of the multi-satellite worst fault bias, a two-step method for determining the worst fault bias is established by determining the worst-case fault unit vector and search interval of the worst-case fault magnitude. The conservative estimation of the integrity risk of navigation and positioning is realized. Constellation simulation software is used to simulate satellite fault scenarios to test the rigor of the integrity risk estimation method. Experimental results show that compared with the traditional integrity risk estimation method, the proposed method can significantly reduce the rate of missed detection in multi-constellation scenarios. In addition, when compared to advanced RAIM method that consider multi-constellation and multi-satellite faults, the proposed method can improve the proportion meeting a global availability of 99.5% by 9.42% at most.
1 | LI L, WANG H, JIA C, et al. Integrity and continuity allocation for the RAIM with multiple constellations[J]. GPS Solutions, 2017, 21(4): 1503-1513. |
2 | CHIN G Y, KRAEMER J H, BROWN R G. GPS RAIM: Screening out bad geometries under worst-case bias conditions[J]. Navigation, 1992, 39(4): 407-427. |
3 | ANGUS J E. RAIM with multiple faults[J]. Navigation, 2006, 53(4): 249-257. |
4 | 赵昂, 杨元喜, 许扬胤, 等. GNSS单系统及多系统组合完好性分析[J]. 武汉大学学报(信息科学版), 2020, 45(1): 72-80. |
ZHAO A, YANG Y X, XU Y Y, et al. Integrity analysis of GNSS single system and multi-system combination[J]. Geomatics and Information Science of Wuhan University, 2020, 45(1): 72-80 (in Chinese). | |
5 | BLANCH J, WALTER T, MILNER C, et al. Baseline advanced RAIM user algorithm: Proposed updates[C]∥ Proceedings of the 2022 International Technical Meeting of The Institute of Navigation. Institute of Navigation, 2022: 229-251. |
6 | MILNER C, OCHIENG W. Weighted RAIM for APV: The ideal protection level[J]. Journal of Navigation, 2010, 64: 61-73. |
7 | MILNER C, PERVAN B, BLANCH J, et al. Evaluating integrity and continuity over time in advanced RAIM[C]∥ 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS). Piscataway: IEEE Press, 2020: 502-514. |
8 | JOERGER M, STEVANOVIC S, LANGEL S, et al. Integrity risk minimisation in RAIM part 1: Optimal detector design[J]. Journal of Navigation, 2016, 69(3): 449-467. |
9 | JOERGER M, CHAN F C, PERVAN B. Solution separation versus residual-based RAIM[J]. Navigation, 2014, 61(4): 273-291. |
10 | BANG E, MILNER C, MACABIAU C, et al. Preliminary integrity assessment for GPS/GLONASS RAIM with multiple faults[C]∥ 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS). Piscataway: IEEE Press, 2018: 327-335. |
11 | BLANCH J, WALKER T, ENGE P, et al. Baseline advanced RAIM user algorithm and possible improvements[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1): 713-732. |
12 | 程春, 赵玉新, 李亮, 等. BDS空间信号异常实时检测与排除方法[J]. 中国科学: 信息科学, 2020, 50(4): 603-616. |
CHENG C, ZHAO Y X, LI L, et al. Real-time detection and elimination method for BDS signal-in-space anomalies[J]. Scientia Sinica (Informationis), 2020, 50(4): 603-616 (in Chinese). | |
13 | ZHAI Y, JOERGER M, PERVAN B. Continuity and availability in dual-frequency multi-constellation ARAIM[C]∥ Proceedings of ION GNSS+ 2015 Institute of Navigation, 2015. |
14 | BLANCH J, WALTER T, ENGE P. RAIM with optimal integrity and continuity allocations under multiple failures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(3): 1235-1247. |
15 | ZHAO P, JOERGER M, LIANG X, et al. A new method to bound the integrity risk for residual-based ARAIM[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(2): 1378-1385. |
16 | ZHAI Y W. Ensuring navigation integrity and continuity using multi-constellation GNSS[D]. Chicago: Illinois Institute of Technology, 2018: 29-30. |
17 | BLANCH J, WALTER T. Stress testing advanced RAIM airborne algorithms[C]∥ Proceedings of ION ITM 2020, Institute of Navigation, 2020. |
18 | YOON M, LEE J Y, PULLEN S. Integrity risk evaluation of impact of ionospheric anomalies on GAST D GBAS[J]. NAVIGATION, 2020, 67(2): 223-234. |
19 | DUENAS ARANA G, ABDUL HAFEZ O, JOERGER M, et al. Integrity monitoring for Kalman filter-based localization[J]. The International Journal of Robotics Research, 2020, 39(13): 1503-1524. |
20 | RTCA. Minimum operational performance standards for GPS/WAAS airborne equipment: RTCA DO-229D [S]. 2006. |
21 | OBER PB. Integrity prediction and monitoring of navigation systems[D]. The Netherlands: Delft University of Technology, 2003: 1-146. |
22 | ZHAO Y X, CHENG C, LI L, et al. BDS signal-in-space anomaly probability analysis over the last 6 years[J]. GPS Solutions, 2021, 25(2): 1-12. |
23 | SU X L, ZHAN X Q, NIU M C, et al. Receiver autonomous integrity monitoring availability and fault detection capability comparison between BeiDou and GPS[J]. Journal of Shanghai Jiaotong University (Science), 2014, 19(3): 313-324. |
24 | BLANCH J, WALTER T, ENGE P, et al. A simple position estimator that improves advanced RAIM performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3): 2485-2489. |
25 | ZHAI Y W, ZHAN X Q, PERVAN B. Bounding integrity risk and false alert probability over exposure time intervals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 1873-1885. |
/
〈 |
|
〉 |