智能反射面辅助无人机移动边缘计算任务数据最大化方法
收稿日期: 2023-01-09
修回日期: 2023-02-06
录用日期: 2023-03-22
网络出版日期: 2023-03-31
基金资助
江苏省自然科学基金(BK20211227);国家自然科学基金(61871400);国家人才项目(2022-JCJQ-ZQ-01);军队高层次人才创新工程(KYZYJQJY2101)
Intelligent reflector surface assisted UAV mobile edge computing task data maximization method
Received date: 2023-01-09
Revised date: 2023-02-06
Accepted date: 2023-03-22
Online published: 2023-03-31
针对实际通信环境较为复杂,用户设备(UE)和无人机(UAV)之间的链路易受阻塞,通信质量差的问题,提出了智能反射面(IRS)重构通信环境,增强无人机移动边缘计算网络性能。在考虑到设备能耗和计算能力的约束下,通过联合优化智能反射面相移控制、无人机飞行轨迹、发射功率和时隙划分最大化用户任务数据。将以上高度复杂的非凸问题分为3个子问题,首先推导出智能反射面相移闭式解,而后引入松弛变量、一阶泰勒表达式和逐次凸逼近技术将原问题转换为发射功率、时隙划分和轨迹优化2个近似凸子问题,最后基于块坐标下降法迭代求解。仿真结果表明:提出的智能反射面辅助的无人机移动边缘计算相比于传统的无人机移动边缘计算,可以有效提高任务数据量。
关键词: 无人机(UAV); 智能反射面(IRS); 移动边缘计算(MEC); 轨迹优化; 资源分配
李伟 , 郭艳 , 李宁 , 刘存涛 , 袁昊 . 智能反射面辅助无人机移动边缘计算任务数据最大化方法[J]. 航空学报, 2023 , 44(19) : 328486 -328486 . DOI: 10.7527/S1000-6893.2023.28486
Due to the complex communication environment, the link between User Equipment (UE) and Unmanned Aerial Vehicle (UAV) is easily blocked and the communication quality is poor. This paper proposes to use an Intelligent Reflector Surface (IRS) to reconstruct the communication environment and enhance the performance of UAV mobile edge computing network. Considering the constraints of equipment energy consumption and computing power, the user task data is maximized by jointly optimizing intelligent reflector movement control, UAV flight trajectory, transmission power and time slot division. The above highly complex nonconvex problems are divided into three sub-problems. Firstly, the closed-form solution for intelligent reflector surface shift is derived. Then, the relaxation variable, first-order Taylor expression and successive convex approximation technique are introduced to transform the original problem into two approximate convex problems, namely transmission power, and slot division and trajectory optimization. Finally, the iterative solution is obtained based on the block coordinate descent method. The simulation results show that compared with the traditional UAV moving edge calculation, the proposed method can effectively improve the amount of mission data.
1 | WANG X F, HAN Y W, LEUNG V C M, et al. Convergence of edge computing and deep learning: A comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 869-904. |
2 | CHEN Y, ZHANG N, ZHANG Y C, et al. Energy efficient dynamic offloading in mobile edge computing for Internet of Things[J]. IEEE Transactions on Cloud Computing, 2021, 9(3): 1050-1060. |
3 | PENG X T, OTA K, DONG M X. Multiattribute-based double auction toward resource allocation in vehicular fog computing[J]. IEEE Internet of Things Journal, 2020, 7(4): 3094-3103. |
4 | LIU L, FENG J, PEI Q Q, et al. Blockchain-enabled secure data sharing scheme in mobile-edge computing: An asynchronous advantage actor–critic learning approach[J]. IEEE Internet of Things Journal, 2021, 8(4): 2342-2353. |
5 | HUANG W, OTA K, DONG M X, et al. Result return aware offloading scheme in vehicular edge networks for IoT[J]. Computer Communications, 2020, 164: 201-214. |
6 | CISCO. COSIC visual networking index: Global mobile data traffic forecast update [S]. San Francisco: CISCO, 2017–2022 . |
7 | 赛迪智库无线电管理研究所. 6G概念及愿景白皮书[N]. 中国计算机报, 2020: 008. |
SADUE Think Tank Radio Management Institute. 6G Concept and Vision White Paper [N]. Chinese Computer, 2020: 008 (in Chinese). | |
8 | WANG J, NA Z Y, LIU X. Collaborative design of multi-UAV trajectory and resource scheduling for 6G-enabled Internet of Things[J]. IEEE Internet of Things Journal, 2021, 8(20): 15096-15106. |
9 | KHUWAJA A A, CHEN Y F, ZHAO N, et al. A survey of channel modeling for UAV communications[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 2804-2821. |
10 | DUO B, WU Q Q, YUAN X J, et al. Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 16288-16293. |
11 | COSTANTINO D, ANGELINI M G, VOZZA G. The engineering and assembly of a low cost UAV[C]∥ 2015 IEEE Metrology for Aerospace (MetroAeroSpace). Piscataway: IEEE Press, 2015: 351-355. |
12 | 陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述[J]. 电子与信息学报, 2022, 44(3): 781-789. |
CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[J]. Journal of Electronics & Information Technology, 2022, 44(3): 781-789 (in Chinese). | |
13 | LIU X, LIU Y W, CHEN Y, et al. Trajectory design and power control for multi-UAV assisted wireless networks: A machine learning approach[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8): 7957-7969. |
14 | MOZAFFARI M, SAAD W, BENNIS M, et al. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems[J]. IEEE Communications Surveys & Tutorials, 2019, 21(3): 2334-2360. |
15 | HUANG C W, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8): 4157-4170. |
16 | WU Q Q, ZHANG R. Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[J]. IEEE Communications Magazine, 2020, 58(1): 106-112. |
17 | LIANG Y C, LONG R Z, ZHANG Q Q, et al. Large intelligent surface/antennas (LISA): Making reflective radios smart[J]. Journal of Communications and Information Networks, 2019, 4(2): 40-50. |
18 | PANG X W, SHENG M, ZHAO N, et al. When UAV meets IRS: Expanding air-ground networks via passive reflection[J]. IEEE Wireless Communications, 2021, 28(5): 164-170. |
19 | MAHMOUD A, MUHAIDAT S, SOFOTASIOS P C, et al. Intelligent reflecting surfaces assisted UAV communications for IoT networks: Performance analysis[J]. IEEE Transactions on Green Communications and Networking, 2021, 5(3): 1029-1040. |
20 | LIU Z X, ZHAO S H, WU Q Q, et al. Joint trajectory design and resource allocation for IRS-assisted UAV communications with wireless energy harvesting[J]. IEEE Communications Letters, 2022, 26(2): 404-408. |
21 | CAI Y X, WEI Z Q, HU S K, et al. Resource allocation and 3D trajectory design for power-efficient IRS-assisted UAV-NOMA communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10315-10334. |
22 | GE L H, DONG P H, ZHANG H, et al. Joint beamforming and trajectory optimization for intelligent reflecting surfaces-assisted UAV communications[J]. IEEE Access, 2020, 8: 78702-78712. |
23 | CAI Y X, WEI Z Q, HU S K, et al. Resource allocation for power-efficient IRS-assisted UAV communications[C]∥ 2020 IEEE International Conference on Communications Workshops (ICC Workshops). Piscataway: IEEE Press, 2020: 1-7. |
24 | ZHANG T K, XU Y, LOO J, et al. Joint computation and communication design for UAV-assisted mobile edge computing in IoT[J]. IEEE Transactions on Industrial Informatics, 2020, 16(8): 5505-5516. |
25 | HE Z Q, YUAN X J. Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[J]. IEEE Wireless Communications Letters, 2020, 9(2): 210-214. |
26 | MISHRA D, JOHANSSON H. Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[C]∥ ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE Press, 2019: 4659-4663. |
27 | DI RENZO M, NTONTIN K, SONG J, et al. Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[J]. IEEE Open Journal of the Communications Society, 2020, 1: 798-807. |
28 | BOYD S P, VANDENBERGHE L. Convex optimization[M]. Cambridge: Cambridge, 2004. |
29 | YANG J N, CHEN J J, YANG Z L. Energy-efficient UAV communication with trajectory optimization[C]∥ 2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE). Piscataway: IEEE Press, 2022: 508-514. |
30 | AZIZI M. Atomic orbital search: A novel metaheuristic algorithm[J]. Applied Mathematical Modelling, 2021, 93: 657-683. |
31 | 李少波, 张成龙, 郑凯. 基于改进粒子群算法的制造车间WSN部署优化[J]. 仪表技术与传感器, 2017(10): 101-104. |
LI S B, ZHANG C L, ZHENG K. Node deployments optimization in wireless sensor networks based on improved particle swarm algorithm[J]. Instrument Technique and Sensor, 2017(10): 101-104 (in Chinese). |
/
〈 |
|
〉 |