综述

基于深度学习的无人机航拍视频多目标检测与跟踪研究进展

  • 苑玉彬 ,
  • 吴一全 ,
  • 赵朗月 ,
  • 陈金林 ,
  • 赵其昌
展开
  • 南京航空航天大学 电子信息工程学院,南京 211106
.E-mail: nuaaimage@163.com

收稿日期: 2022-11-29

  修回日期: 2022-12-31

  录用日期: 2023-03-16

  网络出版日期: 2023-03-21

基金资助

国家自然科学基金(61573183)

Research progress of UAV aerial video multi⁃object detection and tracking based on deep learning

  • Yubin YUAN ,
  • Yiquan WU ,
  • Langyue ZHAO ,
  • Jinlin CHEN ,
  • Qichang ZHAO
Expand
  • College of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
E-mail: nuaaimage@163.com

Received date: 2022-11-29

  Revised date: 2022-12-31

  Accepted date: 2023-03-16

  Online published: 2023-03-21

Supported by

National Natural Science Foundation of China(61573183)

摘要

随着无人机航拍的数据采集愈加便捷,以无人机为平台的多目标检测与跟踪技术发展迅速,在智慧城市、环境监测、地质探测、精准农业和灾害预警等民用和军事领域有着广泛的应用前景,近年来深度学习的突飞猛进也为其提供了多种更为有效的解决思路。然而,无人机视角下目标外观发生突变、目标区域被严重遮挡以及目标消失和重现等挑战性的问题尚未完全解决。综述了基于深度学习的无人机航拍视频多目标检测与跟踪算法,总结了该领域的最新进展,包括多目标检测、多目标跟踪2个模块。多目标检测模块划分为双阶段与单阶段两个部分。对于多目标跟踪模块则依据基于检测的跟踪和联合检测的跟踪2个经典框架,分别阐述了2类算法的原理并分析其优缺点。随后对现有的公开数据集进行统计分析,并对基于无人机航拍视频的多目标检测与跟踪领域内标杆挑战赛VisDrone Challenge近年来的最优方案进行了对比分析。最后总结了无人机视角下多目标检测与跟踪亟待解决的问题并展望未来可能的研究方向,为后续相关研究的人员提供参考。

本文引用格式

苑玉彬 , 吴一全 , 赵朗月 , 陈金林 , 赵其昌 . 基于深度学习的无人机航拍视频多目标检测与跟踪研究进展[J]. 航空学报, 2023 , 44(18) : 28334 -028334 . DOI: 10.7527/S1000-6893.2023.28334

Abstract

With the increasing convenience of data acquisition for aerial photography of Unmanned Aerial Vehicle (UAV), the multi-target detection and tracking technology based on the UAV platform has developed rapidly and has broad prospects for applications in civil and military fields. In recent years, the rapid progress of in-depth learning has also provided a variety of more effective solutions. However, the challenging problems such as sudden changes in the appearance of the target, serious occlusion of the target area, and disappearance and reappearance of the target from the perspective of UAV have not been completely solved. In this paper, we summarize the algorithms for multi-target detection and tracking in UAV aerial video based on deep learning, and summarize the latest progress in this field, including multi-target detection and multi-object tracking. The multi-object detection module is divided into two parts: two-stage and one-stage detection. For the multi-object tracking module, according to the two classical frameworks of tracking-based detection and joint-detection tracking, the principles of the two algorithms are described and their advantages and disadvantages are analyzed. Then, the existing public data sets are statistically analyzed, and the optimal schemes of the benchmark challenge VisDrone Challenge in the field of multi-target detection and tracking based on UAV aerial video in recent years are compared and analyzed. Finally, the paper discusses the urgent problems of multi-object detection and tracking from the perspective of UAV and the possible research directions in the future, providing a reference for the follow-up researchers.

参考文献

1 李玺, 查宇飞, 张天柱, 等. 深度学习的目标跟踪算法综述[J]. 中国图象图形学报201924(12): 2057-2080.
  LI X, ZHA Y F, ZHANG T Z, et al. Survey of visual object tracking algorithms based on deep learning[J]. Journal of Image and Graphics201924(12): 2057-2080 (in Chinese).
2 ELHOSENY M. Multi-object detection and tracking (MODT) machine learning model for real-time video surveillance systems[J]. Circuits, Systems, and Signal Processing202039(2): 611-630.
3 徐芳, 刘晶红, 孙辉, 等. 光学遥感图像海面船舶目标检测技术进展[J]. 光学 精密工程202129(4): 916-931.
  XU F, LIU J H, SUN H, et al. Research progress on vessel detection using optical remote sensing image[J]. Optics and Precision Engineering202129(4): 916-931 (in Chinese).
4 江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报202142(4): 524519.
  JIANG B, QU R K, LI Y D, et al. Object detection in UAV imagery based on deep learning: Review[J]. Acta Aeronautica et Astronautica Sinica202142(4): 524519 (in Chinese).
5 AMMAR A, KOUBAA A, AHMED M, et al. Vehicle detection from aerial images using deep learning: A comparative study[J]. Electronics202110(7): 820.
6 YAO H A, QIN R J, CHEN X Y. Unmanned aerial vehicle for remote sensing applications?a review[J]. Remote Sensing201911(12): 1443.
7 RAVINDRAN R, SANTORA M J, JAMALI M M. Multi-object detection and tracking, based on DNN, for autonomous vehicles: A review[J]. IEEE Sensors Journal202121(5): 5668-5677.
8 葛宝义, 左宪章, 胡永江. 视觉目标跟踪方法研究综述[J]. 中国图象图形学报201823(8): 1091-1107.
  GE B Y, ZUO X Z, HU Y J. Review of visual object tracking technology[J]. Journal of Image and Graphics201823(8): 1091-1107 (in Chinese).
9 BOURAYA S, BELANGOUR A. Approaches to video real time multi-object tracking and object detection: A survey[C]∥ 2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA). Piscataway: IEEE Press, 2021: 145-151.
10 PAL S K, PRAMANIK A, MAITI J, et al. Deep learning in multi-object detection and tracking: State of the art[J]. Applied Intelligence202151(9): 6400-6429.
11 CIAPARRONE G, LUQUE SáNCHEZ F, TABIK S, et al. Deep learning in video multi-object tracking: A survey[J]. Neurocomputing2020381: 61-88.
12 RANGESH A, TRIVEDI M M. No blind spots: Full-surround multi-object tracking for autonomous vehicles using cameras and LiDARs[J]. IEEE Transactions on Intelligent Vehicles20194(4): 588-599.
13 GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥ 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
14 GIRSHICK R. Fast R-CNN[C]∥ 2015 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2016: 1440-1448.
15 REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence201739(6): 1137-1149.
16 CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]∥ 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162.
17 LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]∥European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
18 REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2016: 779-788.
19 REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]∥ 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 6517-6525.
20 REDMON J, FARHADI A. YOLOv3: An incremental improvement[DB/OL]. arXiv preprint1804.02767, 2018.
21 BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[DB/OL]. arXiv preprint2004.10934, 2020.
22 WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[DB/OL]. arXiv preprint:2207.02696, 2022.
23 DUAN K W, BAI S, XIE L X, et al. CenterNet: Keypoint triplets for object detection[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 6568-6577.
24 WU X, LI W, HONG D F, et al. Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey[J]. IEEE Geoscience and Remote Sensing Magazine202210(1): 91-124.
25 OSCO L P, MARCATO J Jr, MARQUES RAMOS A P, et al. A review on deep learning in UAV remote sensing[J]. International Journal of Applied Earth Observation and Geoinformation2021102: 102456.
26 SRIVASTAVA S, NARAYAN S, MITTAL S. A survey of deep learning techniques for vehicle detection from UAV images[J]. Journal of Systems Architecture2021117: 102152.
27 CAZZATO D, CIMARELLI C, SANCHEZ-LOPEZ J L, et al. A survey of computer vision methods for 2D object detection from unmanned aerial vehicles[J]. Journal of Imaging20206(8): 78.
28 陈琳, 刘允刚. 面向无人机的视觉目标跟踪算法:综述与展望[J]. 信息与控制202251(1): 23-40.
  CHEN L, LIU Y G. UAV visual target tracking algorithms: Review and future prospect[J]. Information and Control202251(1): 23-40 (in Chinese).
29 AYALEW A, POOJA. A review on object detection from Unmanned Aerial Vehicle using CNN[J]. International Journal of Advance Research, Ideas and Innovations in Technology, 20195: 241-243.
30 VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]∥ Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2003.
31 DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]∥ 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). Piscataway: IEEE Press, 2005: 886-893.
32 FELZENSZWALB P, MCALLESTER D, RAMANAN D. A discriminatively trained, multiscale, deformable part model[C]∥ 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2008: 1-8.
33 ABUGHALIEH K M, SABABHA B H, RAWASHDEH N A. A video-based object detection and tracking system for weight sensitive UAVs[J]. Multimedia Tools and Applications201978(7): 9149-9167.
34 BAYKARA H C, B 1Y1K E, GüL G,et al. Real-time detection, tracking and classification of multiple moving objects in UAV videos[C]∥ 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI). Piscataway: IEEE Press, 2018: 945-950.
35 JIANG X L, CAO X B. Surveillance from above: A detection-and-prediction based multiple target tracking method on aerial videos[C]∥ 2016 Integrated Communications Navigation and Surveillance (ICNS). Piscataway: IEEE Press, 2016: 4D2-1.
36 AVOLA D, CINQUE L, DIKO A, et al. MS-Faster RCNN: Multi-stream backbone for improved Faster RCNN object detection and aerial tracking from UAV images[J]. Remote Sensing202113(9): 1670.
37 STADLER D. Multi-object tracking in drone videos[C]∥2020 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory, 2021: 123-133.
38 HUANG W, ZHOU X S, DONG M C, et al. Multiple objects tracking in the UAV system based on hierarchical deep high-resolution network[J]. Multimedia Tools and Applications202180(9): 13911-13929.
39 ZHANG S Y, ZHUO L, ZHANG H, et al. Object tracking in unmanned aerial vehicle videos via multifeature discrimination and instance-aware attention network[J]. Remote Sensing202012(16): 2646.
40 LIU Z M, GAO G Y, SUN L, et al. HRDNet: High-resolution detection network for small objects[C]∥ 2021 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE Press, 2021: 1-6.
41 LIU Y J, YANG F B, HU P. Small-object detection in UAV-captured images via multi-branch parallel feature pyramid networks[J]. IEEE Access20208: 145740-145750.
42 AZIMI S M, KRAUS M, BAHMANYAR R, et al. Multiple pedestrians and vehicles tracking in aerial imagery using a convolutional neural network[J]. Remote Sensing202113(10): 1953.
43 DU Y H, WAN J F, ZHAO Y Y, et al. GIAOTracker: A comprehensive framework for MCMOT with global information and optimizing strategies in VisDrone 2021[C]∥ 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW). Piscataway: IEEE Press, 2021: 2809-2819.
44 T?TTRUP D, SKOVGAARD S L, LE FEVRE SEJERSEN J, et al. A fast and accurate approach to multiple-vehicle localization and tracking from monocular aerial images[J]. Journal of Imaging20217(12): 270.
45 ALBABA B M, OZER S. SyNet: An ensemble network for object detection in UAV images[C]∥ 2020 25th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE Press, 2021: 10227-10234.
46 CAO J L, CHOLAKKAL H, ANWER R M, et al. D2Det: Towards high quality object detection and instance segmentation[C]∥ 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 11482-11491.
47 YANG F, FAN H, CHU P, et al. Clustered object detection in aerial images[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 8310-8319.
48 ZHANG R Q, SHAO Z F, HUANG X A, et al. Object detection in UAV images via global density fused convolutional network[J]. Remote Sensing202012(19): 3140.
49 YU W P, YANG T, CHEN C. Towards resolving the challenge of long-tail distribution in UAV images for object detection[C]∥ 2021 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2021: 3257-3266.
50 ZHANG X D, IZQUIERDO E, CHANDRAMOULI K. Dense and small object detection in UAV vision based on cascade network[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 118-126.
51 YANG J X, XIE X M, YANG W Z. Effective contexts for UAV vehicle detection[J]. IEEE Access20197: 85042-85054.
52 WU Z Y, SURESH K, NARAYANAN P, et al. Delving into robust object detection from unmanned aerial vehicles: A deep nuisance disentanglement approach[C]∥ 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2020: 1201-1210.
53 ZHANG W, LIU C S, CHANG F L, et al. Multi-scale and occlusion aware network for vehicle detection and segmentation on UAV aerial images[J]. Remote Sensing202012(11): 1760.
54 CHEN C R, ZHANG Y, LV Q X, et al. RRNet: A hybrid detector for object detection in drone-captured images[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 100-108.
55 WANG H R, WANG Z X, JIA M X, et al. Spatial attention for multi-scale feature refinement for object detection[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 64-72.
56 TANG Z Y, LIU X, YANG B J. PENet: Object detection using points estimation in high definition aerial images[C]∥ 2020 19th IEEE International Conference on Machine Learning and Applications (ICMLA). Piscataway: IEEE Press, 2021: 392-398.
57 DIKE H U, ZHOU Y M. A robust quadruplet and faster region-based CNN for UAV video-based multiple object tracking in crowded environment[J]. Electronics202110(7): 795.
58 LIN Q Z, DING Y, XU H, et al. ECascade-RCNN: Enhanced cascade RCNN for multi-scale object detection in UAV images[C]∥ 2021 7th International Conference on Automation, Robotics and Applications (ICARA). Piscataway: IEEE Press, 2021: 268-272.
59 YOUSSEF Y, ELSHENAWY M. Automatic vehicle counting and tracking in aerial video feeds using cascade region-based convolutional neural networks and feature pyramid networks[J]. Transportation Research Record: Journal of the Transportation Research Board20212675(8): 304-317.
60 LEE Y, LEE S H, YOO J, et al. Efficient single-shot multi-object tracking for vehicles in traffic scenarios[J]. Sensors202121(19): 6358.
61 MAKAROV S B, PAVLOV V A, BEZBORODOV A K, et al. Multiple object tracking using convolutional neural network on aerial imagery sequences[M]∥ Springer Proceedings in Physics. Cham: Springer International Publishing, 2020: 413-420.
62 HOSSAIN S, LEE D J. Deep learning-based real-time multiple-object detection and tracking from aerial imagery via a flying robot with GPU-based embedded devices[J]. Sensors201919(15): 3371.
63 LI J, CHEN S, ZHANG F B, et al. An adaptive framework for multi-vehicle ground speed estimation in airborne videos[J]. Remote Sensing201911(10): 1241.
64 EMIYAH C, NYARKO K, CHAVIS C, et al. Extracting vehicle track information from unstabilized drone aerial videos using YOLOv4 common object detector and computer vision[C]∥ Proceedings of the Future Technologies Conference. Cham: Springer, 2022: 232-239.
65 YANG T, LI D D, BAI Y, et al. Multiple-object-tracking algorithm based on dense trajectory voting in aerial videos[J]. Remote Sensing201911(19): 2278.
66 LIU M J, WANG X H, ZHOU A J, et al. UAV-YOLO: Small object detection on unmanned aerial vehicle perspective[J]. Sensors202020(8): 2238.
67 NING M, MA X L, LU Y, et al. SeeFar: Vehicle speed estimation and flow analysis from a moving UAV[C]∥ International Conference on Image Analysis and Processing. Cham: Springer, 2022: 278-289.
68 KAPANIA S, SAINI D, GOYAL S, et al. Multi object tracking with UAVs using deep SORT and YOLOv3 RetinaNet detection framework[C]∥ Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems. New York: ACM, 2020: 1-6.
69 TIAN G Y, LIU J R, YANG W Y. A dual neural network for object detection in UAV images[J]. Neurocomputing2021443: 292-301.
70 ZHANG P Y, ZHONG Y X, LI X Q. SlimYOLOv3: Narrower, faster and better for real-time UAV applications[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 37-45.
71 刘芳, 浦昭辉, 张帅超. 基于注意力特征融合的无人机多目标跟踪算法[J]. 控制与决策202338(2): 345-353.
  LIU F, PU Z H, ZHANG S C. UAV multi-target tracking algorithm based on attention feature fusion[J]. Control and Decision202338(2): 345-353 (in Chinese).
72 SAETCHNIKOV I, SKAKUN V, TCHERNIAVSKAIA E. Efficient objects tracking from an unmanned aerial vehicle[C]∥ 2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace). Piscataway: IEEE Press, 2021: 221-225.
73 LI Z K, LIU X L, ZHAO Y, et al. A lightweight multi-scale aggregated model for detecting aerial images captured by UAVs[J]. Journal of Visual Communication and Image Representation202177: 103058.
74 LIANG X, ZHANG J, ZHUO L, et al. Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology202030(6): 1758-1770.
75 WANG X R, LI W H, GUO W, et al. SPB-YOLO: An efficient real-time detector for unmanned aerial vehicle images[C]∥ 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). Piscataway: IEEE Press, 2021: 099-104.
76 LIU Y Z, DING Z M, CAO Y, et al. Multi-scale feature fusion UAV image object detection method based on dilated convolution and attention mechanism[C]∥ Proceedings of the 2020 8th International Conference on Information Technology: IoT and Smart City. New York: ACM, 2020: 125-132.
77 ZHANG Z Y, LIU Y P, LIU T C, et al. DAGN: A real-time UAV remote sensing image vehicle detection framework[J]. IEEE Geoscience and Remote Sensing Letters202017(11): 1884-1888.
78 JADHAV A, MUKHERJEE P, KAUSHIK V, et al. Aerial multi-object tracking by detection using deep association networks[C]∥ 2020 National Conference on Communications (NCC). Piscataway: IEEE Press, 2020: 1-6.
79 PI Z L, LIAN Y C, CHEN X E, et al. A novel spatial and temporal context-aware approach for drone-based video object detection[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 179-188.
80 LIANG Z Q, WANG J S, XIAO G, et al. FAANet: Feature-aligned attention network for real-time multiple object tracking in UAV videos[J]. Chinese Optics Letters202220(8): 081101.
81 ZHANG H T, WANG G A, LEI Z C, et al. Eye in the sky: Drone-based object tracking and 3D localization[C]∥ Proceedings of the 27th ACM International Conference on Multimedia. New York: ACM, 2019: 899-907.
82 WU Q T, ZHOU Y M. Real-time object detection based on unmanned aerial vehicle[C]∥ 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway: IEEE Press, 2019: 574-579.
83 KYRKOU C, PLASTIRAS G, THEOCHARIDES T, et al. DroNet: Efficient convolutional neural network detector for real-time UAV applications[C]∥ 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE). Piscataway: IEEE Press, 2018: 967-972.
84 BALAMURALIDHAR N, TILON S, NEX F. MultEYE: Monitoring system for real-time vehicle detection, tracking and speed estimation from UAV imagery on edge-computing platforms[J]. Remote Sensing202113(4): 573.
85 LI M L, ZHAO X K, LI J S, et al. ComNet: Combinational neural network for object detection in UAV-borne thermal images[J]. IEEE Transactions on Geoscience and Remote Sensing202159(8): 6662-6673.
86 ZHANG J, LIANG X, WANG M, et al. Coarse-to-fine object detection in unmanned aerial vehicle imagery using lightweight convolutional neural network and deep motion saliency[J]. Neurocomputing2020398: 555-565.
87 WU P P, XU H, DING Y, et al. An improved online multiple object tracking algorithm based on KFHT motion compensation model in the aerial videos[C]∥ Proc SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, 202111763: 2431-2436.
88 AL-SHAKARJI N M, BUNYAK F, SEETHARAMAN G, et al. Multi-object tracking cascade with multi-step data association and occlusion handling[C]∥ 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway: IEEE Press, 2019: 1-6.
89 WANG J E, SIMEONOVA S, SHAHBAZI M. Orientation- and scale-invariant multi-vehicle detection and tracking from unmanned aerial videos[J]. Remote Sensing201911(18): 2155.
90 YU H Y, LI G R, ZHANG W G, et al. Self-balance motion and appearance model for multi-object tracking in UAV[C]∥ Proceedings of the ACM Multimedia Asia. New York: ACM, 2019: 1-6.
91 AHN H, CHO H J. Research of multi-object detection and tracking using machine learning based on knowledge for video surveillance system[J]. Personal and Ubiquitous Computing202226(2): 385-394.
92 LUSK P C, BEARD R W. Visual multiple target tracking from a descending aerial platform[C]∥ 2018 Annual American Control Conference (ACC). Piscataway: IEEE Press, 2018: 5088-5093.
93 LI W Q, MU J T, LIU G Z. Multiple object tracking with motion and appearance cues[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 161-169.
94 ARD? H, NILSSON M. Multi target tracking from drones by learning from generalized graph differences[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 46-54.
95 FU H Y, GUAN J, JING F, et al. A real-time multi-vehicle tracking framework in intelligent vehicular networks[J]. China Communications202118(6): 89-99.
96 HE Y J, FU C H, LIN F L, et al. Towards robust visual tracking for unmanned aerial vehicle with tri-attentional correlation filters[C]∥ 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2021: 1575-1582.
97 STADLER D, SOMMER L W, BEYERER J. PAS tracker: Position-, appearance- and size-aware multi-object tracking in drone videos[C]∥ European Conference on Computer Vision. Cham: Springer, 2020: 604-620.
98 LI F, FU C H, LIN F L, et al. Training-set distillation for real-time UAV object tracking[C]∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 9715-9721.
99 LI Y M, FU C H, HUANG Z Y, et al. Intermittent contextual learning for keyfilter-aware UAV object tracking using deep convolutional feature[J]. IEEE Transactions on Multimedia202123: 810-822.
100 XU S Y, SAVVARIS A, HE S M, et al. Real-time implementation of YOLO JPDA for small scale UAV multiple object tracking[C]∥ 2018 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2018: 1336-1341.
101 LEE M H, YEOM S. Tracking of moving vehicles with a UAV[C]∥ 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS) and 19th International Symposium on Advanced Intelligent Systems (ISIS). Piscataway: IEEE Press, 2019: 928-931.
102 王旭辰, 韩煜祺, 唐林波, 等. 基于深度学习的无人机载平台多目标检测和跟踪算法研究[J]. 信号处理202238(1): 157-163.
  WANG X C, HAN Y Q, TANG L B, et al. Multi target detection and tracking algorithm for UAV platform based on deep learning[J]. Journal of Signal Processing202238(1): 157-163 (in Chinese).
103 LUO X, ZHAO R, GAO X A. Research on UAV multi-object tracking based on deep learning[C]∥ 2021 IEEE International Conference on Networking, Sensing and Control (ICNSC). Piscataway: IEEE Press, 2021.
104 KHALKHALI M B, VAHEDIAN A, YAZDI H S. Situation assessment-augmented interactive Kalman filter for multi-vehicle tracking[J]. IEEE Transactions on Intelligent Transportation Systems202223(4): 3766-3776.
105 WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]∥ 2017 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2018: 3645-3649.
106 WU Y, WANG Y, ZHANG D, et al. Research on vehicle tracking method based on UAV video[C]∥ 2nd International Conference on Internet of Things and Smart City (IoTSC 2022). SPIE, 2022: 801-806.
107 WU H, DU C J, JI Z P, et al. SORT-YM: An algorithm of multi-object tracking with YOLOv4-tiny and motion prediction[J]. Electronics202110(18): 2319.
108 CHEN T, PENNISI A, LI Z, et al. A hierarchical association framework for multi-object tracking in airborne videos[J]. Remote Sensing201810(9): 1347.
109 YU H Y, LI G R, SU L, et al. Conditional GAN based individual and global motion fusion for multiple object tracking in UAV videos[J]. Pattern Recognition Letters2020131: 219-226.
110 PAN S Y, TONG Z H, ZHAO Y Y, et al. Multi-object tracking hierarchically in visual data taken from drones[C]∥ 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). Piscataway: IEEE Press, 2020: 135-143.
111 BAHMANYAR R, AZIMI S M, REINARTZ P. Multiple vehicles and people tracking in aerial imagery using stack of micro single-object-tracking CNNs[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences2019, XLII-4/W18: 163-170.
112 MARVASTI-ZADEH S M, KHAGHANI J, GHANEI-YAKHDAN H, et al. COMET: Context-aware IoU-guided network for small object tracking[C]∥ Asian Conference on Computer Vision. Cham: Springer, 2021: 594-611.
113 ROBICQUET A, SADEGHIAN A, ALAHI A, et al. Learning social etiquette: Human trajectory understanding in crowded scenes[C]∥ European Conference on Computer Vision. Cham: Springer, 2016: 549-565.
114 DU D W, QI Y K, YU H Y, et al. The unmanned aerial vehicle benchmark: Object detection and tracking[C]∥European Conference on Computer Vision. Cham: Springer, 2018: 375-391.
115 ZHU P, WEN L, BIAN X, et al. Vision meets drones: A challenge [DB/OL]. arXiv preprint1804.07437, 2018.
116 ZHU P F, WEN L Y, DU D W, et al. Vision meets drones: past, present and future[DB/OL] arXiv preprint2001.06303, 2020.
117 BONDI E, JAIN R, AGGRAWAL P, et al. BIRDSAI: A dataset for detection and tracking in aerial thermal infrared videos[C]∥ 2020 IEEE Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE Press, 2020: 1736-1745.
118 HSIEH M R, LIN Y L, HSU W H. Drone-based object counting by spatially regularized regional proposal network[C]∥ 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 4165-4173.
119 XU X W, ZHANG X Y, YU B, et al. DAC-SDC low power object detection challenge for UAV applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence202143(2): 392-403.
120 MANDAL M, KUMAR L K, VIPPARTHI S K. MOR-UAV: A benchmark dataset and baselines for moving object recognition in UAV videos[C]∥ Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 2626-2635.
121 ZHU P F, SUN Y M, WEN L Y, et al. Drone based RGBT vehicle detection and counting: A challenge[DB/OL]. arXiv preprint2003.02437, 2020.
122 BOZCAN I, KAYACAN E. AU-AIR: A multi-modal unmanned aerial vehicle dataset for low altitude traffic surveillance[C]∥ 2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2020: 8504-8510.
123 ZHANG H J, SUN M S, LI Q, et al. An empirical study of multi-scale object detection in high resolution UAV images[J]. Neurocomputing2021421: 173-182.
124 BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: The CLEAR MOT metrics[J]. Journal on Image and Video Processing2008, 2008Article No. 1,
125 RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]∥ European Conference on Computer Vision. Cham: Springer, 2016: 17-35.
126 LUITEN J, OS?EP A, DENDORFER P, et al. HOTA: A higher order metric for evaluating multi-object tracking[J]. International Journal of Computer Vision2021129(2): 548-578.
文章导航

/