综述

航天推进系统中的智能控制方法研究进展

  • 刘育玮 ,
  • 程玉强 ,
  • 吴建军
展开
  • 国防科技大学 空天科学学院,长沙  410073
.E-mail: jjwu@nudt.edu.cn

收稿日期: 2023-02-01

  修回日期: 2023-02-15

  录用日期: 2023-03-17

  网络出版日期: 2023-03-17

基金资助

国家自然科学基金创新群体研究项目(T2221002)

Research progress of intelligent control methods in space propulsion systems

  • Yuwei LIU ,
  • Yuqiang CHENG ,
  • Jianjun WU
Expand
  • College of Aerospace Science and Engineering,National University of Defense Technology,Changsha  410073,China
E-mail: jjwu@nudt.edu.cn

Received date: 2023-02-01

  Revised date: 2023-02-15

  Accepted date: 2023-03-17

  Online published: 2023-03-17

Supported by

Innovation Research Groups of the National Natural Science Foundation of China(T2221002)

摘要

航天推进技术的智能化是研究人员长久以来的梦想与追求,是提高航天活动可靠性、任务适应性的重要途径。随着人工智能技术的发展,智能控制技术已逐步在航天推进系统上展开应用。本文以各国航天智能化的发展情况为根据,聚焦航天推进系统的智能控制方法,对航天推进系统智能控制技术的研究现状和进展进行了综述。首先,总结了航天推进系统中几种典型的智能控制;然后,列举了各航天大国具有代表的控制系统并给出了发展趋势;最后,依据目前的航天推进系统中的智能控制方法,提出了航天推进系统中的智能控制方法的发展趋势,在可能的情况下,提供了一些意见,为从事航天推进系统智能控制方法研究的研究人员提供有用的参考。

本文引用格式

刘育玮 , 程玉强 , 吴建军 . 航天推进系统中的智能控制方法研究进展[J]. 航空学报, 2023 , 44(15) : 528505 -528505 . DOI: 10.7527/S1000-6893.2023.28505

Abstract

The intelligentization of space propulsion technology has been a dream and pursuit for a long time and is an important way to improve the reliability and mission adaptability of space activities. With the development of artificial intelligence technologies, intelligent control technologies have been gradually applied in the space propulsion system. Based on the development of aerospace and artificial intelligence in various countries, this paper focuses on the intelligent control methods of aerospace propulsion systems. The research status and progress of intelligent control technologies for space propulsion systems are summarized, and several typical intelligent control technologies in space propulsion systems are reviewed. Then, the representative control systems of major aerospace countries as well as the development trends are discussed. Finally, according to the current intelligent control methods in the space propulsion system, the development trend of intelligent control methods in space propulsion systems is ananlyzed. Some suggestions are made to provide a useful reference for researchers engaged in the research on intelligent control methods for space propulsion systems.

参考文献

1 WANG H N, LIU N, ZHANG Y Y, et al. Deep reinforcement learning: A survey[J]. Frontiers of Information Technology & Electronic Engineering202021(12): 1726-1744.
2 ZHUANG Y T, WU F, CHEN C, et al. Challenges and opportunities: From big data to knowledge in AI 2.0[J]. Frontiers of Information Technology & Electronic Engineering201718(1): 3-14.
3 KALUARACHCHI T, REIS A, NANAYAKKARA S. A review of recent deep learning approaches in human-centered machine learning[J]. Sensors (Basel, Switzerland)202121(7): 2514.
4 LU Y. Artificial intelligence: A survey on evolution, models, applications and future trends[J]. Journal of Management Analytics20196(1): 1-29.
5 中华人民共和国国务院. 新一代人工智能发展规划[EB/OL]. (2017-07-20)[2023-01-13]. .
  The State Council of the People’s Republic of China. New Generation Artificial Intelligence Development Plan [EB/OL] (2017-07-20)[2023-01-13]. (in Chinese).
6 袁珩, 耿喆, 徐峰, 等. 美国人工智能战略布局与对外策略[J]. 科技管理研究202242(12):34-39.
  YUAN H, GENG Z, XU F, et al. Artificial intelligence strategy layout and foreign strategies of the United States[J]. Science and Technology Management Research202242(12):34-39 (in Chinese).
7 包为民. 航天智能控制技术让运载火箭 “会学习”[J]. 航空学报202142(11): 525055.
  BAO W M. Space intelligent control technology enables launch vehicle to “self-learning”[J]. Acta Aeronautica et Astronautica Sinica202142(11): 525055 (in Chinese).
8 泮斌峰, 张哲, 谭浩声. 美国喷气推进实验室人工智能技术发展现状与分析[J]. 中国航天2022(5): 525055.
  PAN B F, ZHANG Z, TAN H S. Development status and analysis of artificial intelligence technology in American jet propulsion laboratory[J]. Aerospace China2022(5): 8-14 (in Chinese).
9 О развитии искусственного интеллекта в Российской Федерации[EB/OL] (2019-10-11) [2023-01-13]. .
  The Development of Artificial Intelligence in the Russian Federation. [EB/OL] (2019-10-11) [2023-01-13]. .
10 李锡宁.俄制定人工智能国家发展战略[EB/OL] (2019-10-28) [2023-01-13].. .
  Li X N. Russia formulates a national development strategy for artificial intelligence [EB/OL] (2019-10-28) [2023-01-13]. . (in Chinese).
11 National Artificial Intelligence Initiative Act of 2020, H.R.6216, 116th Cong. (2020), [EB/OL] (2020-12-3) [2023-01-13] .
12 Commission European. 2021. European Union White Paper on Artificial Intelligence: A European Approach to Excellence and Trust. Brussels.[EB/OL] (2020-2-19) [2023-01-13]. .
13 Government UK . (2021). National AI Strategy. London [EB/OL] (2022-12-18) [2023-01-13]. .
14 Japan Aerospace Exploration Agency. (2017). Space Industry Outlook 2030. Tokyo. [EB/OL] (2017-5-29) [2023-01-13]. .
15 Federation Russian. (2019). National Strategy for the Development of Artificial Intelligence Until 2030. Moscow. [EB/OL] (2019-11-19) [2023-01-13] Russia Adopts National Strategy for Development of Artificial Intelligence-Jamestown.
16 中华人民共和国中央人民政府. 2021中国航天[EB/OL]. (2022-01-28) [2023-01-13]. .
  The Central People’s Government of the People’s Republic of China. 2021 China Aerospace [EB/OL] (2022-01-28) [2023-01-13]. (in Chinese).
17 袁利. 面向不确定环境的航天器智能自主控制技术[J]. 宇航学报202142(7):839-849.
  YUAN L. Spacecraft intelligent autonomous control technology toward uncertain environment[J]. Journal of Astronautics202142(7):839-849 (in Chinese).
18 柴金宝, 陈雄, 周景亮, 等. 基于人工蜂群算法优化的燃气发生器 压强自适应模糊免疫PID控制[J]. 推进技术201940(2): 441-448.
  CHAI J B, CHEN X, ZHOU J L, et al. Adaptive fuzzy immune PID control for gas generator pressure based on artificial bee colony algorithm optimization[J]. Journal of Propulsion Technology201940(2): 441-448 (in Chinese).
19 LEE C C. Intelligent control based on fuzzy logic and neural net theory: AA19126654[R]. Berkeley: University of California, 1991.
20 ATHANS M. Advances in control systems: Theory and applications, vol 1[J]. IEEE Transactions on Automatic Control196611(3): 633-634.
21 MENDEL J M. Application of artificial intelligence techniques to a spacecraft control problem: NASA-CR-55[R]. Washington, D. C.: NASA, 1967.
22 FU K. Learning control systems and intelligent control systems: An intersection of artifical intelligence and automatic control[J]. IEEE Transactions on Automatic Control197116(1): 70-72.
23 WALTZ M, FU K. A heuristic approach to reinforcement learning control systems[J]. IEEE Transactions on Automatic Control196510(4): 390-398.
24 德先生. 模式识别拓荒者是一位中国人[EB/OL]. (2018-08-24)[2023-01-13]. .
  Mr. De. Pattern recognition pioneer is a Chinese [EB/OL]. (2018-08-24)[2023-01-13]. (in Chinese).
25 LEE C C. Fuzzy logic in control systems: fuzzy logic controller. Ⅰ[J]. IEEE Transactions on Systems, Man, and Cybernetics199020(2): 404-418.
26 LEE C C. Fuzzy logic in control systems: fuzzy logic controller. Ⅱ[J]. IEEE Transactions on Systems, Man, and Cybernetics199020(2): 419-435.
27 YASUNOBU S and HASEGAWA G, Evaluation of an automatic container crane operation system based on predictive fuzzy control[J]. Control Theory and Advanced Technology19862(3):419-432.
28 XIANG X B, YU C Y, LAPIERRE L, et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles[J]. International Journal of Fuzzy Systems201820(2): 572-586.
29 FENG G. A survey on analysis and design of model-based fuzzy control systems[J]. IEEE Transactions on Fuzzy Systems200614(5): 676-697.
30 KOSHIYAMA A S, ESCOVEDO T, VELLASCO M M B R, et al. GPFIS-control: A fuzzy genetic model for control tasks[C]∥ 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Piscataway: IEEE Press, 2014: 1953-1959.
31 MO J. Tools for intelligent control: Fuzzy controllers, neural networks and genetic algorithms[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences2003361(1809): 1781-1808.
32 Lü X Q, WU Y B, LIAN J, et al. Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm[J]. Energy Conversion and Management2020205: 112474.
33 FEI J T, CHEN Y, LIU L, et al. Fuzzy multiple hidden layer recurrent neural control of nonlinear system using terminal sliding-mode controller[J]. IEEE Transactions on Cybernetics202252(9): 9519-9534.
34 FEI J T, WANG Z, LIANG X, et al. Fractional sliding-mode control for microgyroscope based on multilayer recurrent fuzzy neural network[J]. IEEE Transactions on Fuzzy Systems202230(6): 1712-1721.
35 LIANG H J, LIU G L, ZHANG H G, et al. Neural-network-based event-triggered adaptive control of nonaffine nonlinear multiagent systems with dynamic uncertainties[J]. IEEE Transactions on Neural Networks and Learning Systems202132(5): 2239-2250.
36 张立宪, 卢生奥, 韩铭昊, 等. 鲁棒强化学习及其在航天控制中的应用与展望[J]. 航天控制202139(3): 3-11.
  ZHANG L X, LU S A, HAN M H, et al. Robust reinforcement learning and its application and prospect in aerospace control[J]. Aerospace Control202139(3): 3-11 (in Chinese).
37 PENG Z N, LUO R, HU J P, et al. Optimal tracking control of nonlinear multiagent systems using internal reinforce Q-learning[J]. IEEE Transactions on Neural Networks and Learning Systems202233(8): 4043-4055.
38 SURRIANI A, WAHYUNGGORO O, CAHYADI A I. Reinforcement learning for cart pole inverted pendulum system[C]∥ 2021 IEEE Industrial Electronics and Applications Conference (IEACon). Piscataway: IEEE Press, 2021: 297-301.
39 KLOPF A H, The Hedonistic neuron[M]. Washington, D. C.: Hemisphere, 1982.
40 FUKUDA T, KUBOTA N. Intelligent robotic systems: Adaptation, learning, and evolution[J]. Artificial Life and Robotics19993(1): 32-38.
41 LIN C M. Application of neural network in control problem[C]∥ 2007 International Conference on Machine Learning and Cybernetics. Piscataway: IEEE Press, 2007: 3465-3471.
42 SHI L, WANG XING CHENG. The application of neural network in nonlinear system[J]. Advanced Materials Research2011179-180: 128-134.
43 OMIDVAR O, ELLIOTT D L. Neural systems for control[M]. San Diego: Academic Press, 1997.
44 SPIELBERG S P K, GOPALUNI R B, LOEWEN P D. Deep reinforcement learning approaches for process control[C]∥ 2017 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP). Piscataway: IEEE Press, 2017: 201-206.
45 SUTTON R S, BARTO A G. An introduction[M]. 2rd edition. Cambridge: The MIT Press, 2018.
46 BU?ONIU L, DE BRUIN T, TOLI? D, et al. Reinforcement learning for control: Performance, stability, and deep approximators[J]. Annual Reviews in Control201846: 8-28.
47 BERTSEKAS D P. Reinforcement learning and optimal control[M]. Belmont: Athena Scientific, 2018.
48 OTTO E W, FLAGE R A, Control of combustion-chamber pressure and oxidant-fuel. ratio for a regeneratively cooled hydrogen-fluorine rocket engine: Technical note D-82[R]. Cleveland: NASA Lewis Research Center, 1959.
49 SEITZ P F, SEARLE R F. Space shuttle main engine control system: SAE PAPER 730927[R]. Washington, D.C.: NASA, 1973.
50 NEMETH E, ANDERSON R, OLS J, et al. Reusable rocket engine intelligent control system framework design: NASE-CR-187213[R]. Washington, D.C.: NASA, 1991.
51 NEMETH E, ANDERSON R, MARAM J, et al. An advanced intelligent control system framework: AIAA 1992-3162[R]. Reston: AIAA, 1992.
52 LORENZO C F, Ray A, HOLMES M S, Nonlinear control of a reusable rocket engine for life extension[J], Journal of Propulsion and Power200117(5): 998-1004.
53 Carl F L and JEFFREY L M. Overview of rocket engine control: NASA-TM-105318 [R].Cleveland: NASA Lewis Research Center, 1991.
54 DAI X W, RAY A. Damage-mitigating control of a reusable rocket engine: Part Ⅱ-formulation of an optimal policy[J]. Journal of Dynamic Systems, Measurement, and Control1996118(3): 409-415.
55 MERRILL W, LORENZO C. A reusable rocket engine intelligent control: AIAA-1988-3114[R]. Reston: AIAA, 1988.
56 GONCHAROV N, ORLOV V, RACHUK V, et al. Reusable launch vehicle propulsion based on the RD-0120 engine: AIAA-1995-3003[R]. Reston: AIAA, 1995.
57 RUDIS M, ORLOV V, RACHUCK V, et al. A universal methodology for predicting liquid rocket engine durability based on Russian RD-0120 engine operating experience: AIAA-1995-2963[R]. Reston: AIAA, 1995.
58 Биргер Л А, Шорр Б Ф, Демянушко И В, др. Подробности тепловой прочности машины.[M] Москва: Машиностроение, 1975.
  BIRGER L A, SHORR B F, DEMYANUSHKO I V, et al. Details of the thermal strength of the machine[M] Moscow: Mechanical Manufacturing, 1975 (in Russian).
59 FUKUSHIMA Y, LMOTO T. Lessons learned in the development of the LE-5 and LE-7: AIAA-1994-3375[R]. Reston: AIAA, 1994.
60 KISHIMOTO K, KAKUMA Y, KOYARI Y. LE-5 engine start sequence and its extension to the expander-bleed-cycle: AIAA-1991-2567[R]. Reston: AIAA, 1991.
61 FUJITA M, FUKUSHIMA Y. Improvement of LE-5A and LE-7 engine: AIAA-1996-2847[R]. Reston: AIAA, 1996.
62 KAMIJO K, YAMADA H, SAKAZUME N, et al. Developmental history of liquid oxygen turbopumps for the LE-7 engine[J]. Transactions of the Japan Society for Aeronautical and Space Sciences200144(145): 155-163.
63 NAKANISHI H, SOGAME E, SUZUKI A, et al. Le-5 oxygen-hydrogen rocket engine for h-i launch vehicle[M]∥Space Mankind's Fourth Environment. Amsterdam: Elsevier, 1982: 511-522.
64 KANMURIi A, KAMDA T, WAKAMATSU T. Analysis of LOX/LH2 rocket engine (LE-7)[J]. AIAA Journal1989(89):2736
65 SUNAKAWA H, KOBAYASHI T, OKITA K, et al. Development status of electrical valve control system for LE-9 engine: AIAA-2017-4671[R]. Reston: AIAA, 2017.
66 NEGORO N, TAMURA T, MANAKO H, et al. Overview of LE-9 engine development for H3 launch vehicle: IAC-16-C4.1.2[R]. Paris: International Astronautical Federation, 2016.
67 DE KORVER V, LASSOUDIERE F, FIORENTINO C, et al. Vulcain X technological demonstration roadmap: AIAA-2007-5489[R]. Reston: AIAA, 2007.
68 ALLIOT P, LASSOUDIERE F, FIORENTINO C, et al. Develoment status of the vinci engine for the ARIANE 5 upper stage: AIAA-2005-3755[R]. Reston: AIAA, 2005.
69 GOIRAND B, GALLARDO J F, BOSSON R. Vinci hydrogen turbopump-A new step in safe, faster and cheaper developments: AIAA-2000-3156[R]. Reston: AIAA, 2000.
70 李斌, 张小平, 马冬英. 我国新一代载人火箭液氧煤油发动机[J]. 载人航天201420(5): 427-431.
  LI B, ZHANG X P, MA D Y. The LOX/Kerosene rocket engine for Chinese new-generation manned launch vechicle. J]. Manned Spaceflight201420(5): 427-431 (in Chinese).
71 MUSGRAVE J, PAXSON D, LITT J, et al. A demonstration of an intelligent control system for a reusable rocket engine: NASA-TM-105794[R]. Cleveland: NASA Lewis Research Center, 1992.
72 LITT J S, SIMON D L, GARG S, et al. A survey of intelligent control and health management technologies for aircraft propulsion systems[J]. Journal of Aerospace Computing, Information, and Communication20041(12): 543-563.
73 MUSGRAVE J L, PAXSON D E and LITT J S. A demonstration of an intelligent control system for a reusable rocket engine: NASA-TM-105794[R]. Cleveland: NASA Lewis Research Center, 1992.
74 包为民, 祁振强, 张玉. 智能控制技术发展的思考[J]. 中国科学(信息科学)202050(8): 1267-1272.
  BAO W M, QI Z Q, ZHANG Y. Thoughts on the development of intelligent control technology[J]. Scientia Sinica (Informationis)202050(8): 1267-1272 (in Chinese).
75 PéREZ-ROCA S, MARZAT J, PIET-LAHANIER H, et al. A survey of automatic control methods for liquid-propellant rocket engines[J]. Progress in Aerospace Sciences2019107: 63-84.
76 WAXENEGGER-WILFING G, DRESIA K, DEEKEN J, et al. A reinforcement learning approach for transient control of liquid rocket engines[J]. IEEE Transactions on Aerospace and Electronic Systems202157(5): 2938-2952.
77 CHENG L, WANG Z B, JIANG F H. Real-time control for fuel-optimal Moon landing based on an interactive deep reinforcement learning algorithm[J]. Astrodynamics20193(4): 375-386.
78 DRESIA K, JENTZSCH S, WAXENEGGER-WILFING G, et al. Multidisciplinary design optimization of reusable launch vehicles for different propellants and objectives[J]. Journal of Spacecraft and Rockets202158(4): 1017-1029.
79 MARIOLIS I, PELEKA G, KARGAKOS A, et al. Pose and category recognition of highly deformable objects using deep learning[C]∥ 2015 International Conference on Advanced Robotics (ICAR). Piscataway: IEEE Press, 2015: 655-662.
80 KAPPLER D, BOHG J, SCHAAL S. Leveraging big data for grasp planning[C]∥ 2015 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2015: 4304-4311.
81 PIERSON H A, GASHLER M S. Deep learning in robotics: A review of recent research[J]. Advanced Robotics201731(16): 821-835.
82 NEVEROVA N, WOLF C, TAYLOR G W, et al. Multi-scale deep learning for gesture detection and localization[C]∥European Conference on Computer Vision. Cham: Springer Cham, 2015: 474-490.
83 POLYDOROS A S, NALPANTIDIS L, KRüGER V. Real-time deep learning of robotic manipulator inverse dynamics[C]∥ 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 3442-3448.
84 ZHANG T H, KAHN G, LEVINE S, et al. Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search[C]∥ 2016 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE Press, 2016: 528-535.
85 RAY A, HOLMES M S, LORENZO C F. Life extending controller design for reusable rocket engines[J]. The Aeronautical Journal2001105(1048): 315-322.
86 吴建军, 魏鹏飞. 可重复使用液体火箭发动机智能减损控制技术[J]. 火箭推进2005, 31(4)8-14.
  WU J J, WEI P F. Intelligent damage-mitigating control techniques for reusable liquid-propellant rocket engines[J]. Journal of Rocket Propulsion200531(4):8-14 (in Chinese).
87 程玉强, 吴建军, 刘洪刚. 基于粒子群算法的可重复使用液体火箭发动机减损优化问题研究[J]. 弹箭与制导学报200929(2): 151-154.
  CHENG Y Q, WU J J, LIU H. Particle swarm optimization algorithm based damage-mitigating control for reusable liquid propellant rocket engine[J]. Journal of Projectiles, Rockets, Missiles and Guidance200929(2): 151-154 (in Chinese).
88 LE G S. Automatic & Control applications in the European space propulsion domain. From need expression to preparation for an uncertain future[C]∥ACD2016 Airbus Safran Launchers. Toulous:Airbus, 2016.
89 CARL F L, WALTER C M. Life extending control: NASA-92A29166[R]. Washington, D. C. : NASA, 1991.
90 WANG L, LIU Y P, LIU X D. A novel global sliding mode control strategy for attitude control of reusable launch vehicles in the reentry phase[C]∥ 2017 36th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2017: 3615-3620.
91 都延丽, 林海兵, 刘武, 等. 可重复使用运载器预测制导与鲁棒容错控制[J]. 哈尔滨工业大学学报202153(6):62-70.
  DU Y L, LIN H B, LIU W, et al. Predictive guidance and robust fault-tolerant control for RLVs[J]. Journal of Harbin Institute of Technology202153(6): 62-70 (in Chinese).
92 XU K J, GUO Y Q, LIU L Y. Multivariable control coupling analysis and ALQR thrust controller design of liquid rocket engine[C]∥ 2021 12th International Conference on Mechanical and Aerospace Engineering (ICMAE). Piscataway: IEEE Press, 2021: 187-192.
93 王军杰, 钟明磊. Meilin和猛禽液体火箭发动机技术研究与启示[C]∥第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会论文集(第四册). 北京: 中国学术期刊电子出版社, 2020: 115-122.
  WANG J J, ZHONG M L. Meilin and Raptor liquid rocket engine technology research and enlightenment [C]∥Proceedings of the 5th Aerospace Power Joint Conference and the 41st Technical Exchange Meeting of China Aerospace Third Professional Information Network (Volume 4). Beijing: China Academic Journal Electrotic publishing House, 2020: 115-122 (in Chinese).
94 BERGER B. Falcon 1 Failure Traced to a Busted Nut [EB/OL]. Space.com. (2006-07-19) [2023-01-13]. .
95 WHITESIDES L H. SpaceX Completes Development of Rocket Engine for Falcon 1 and 9[EB/OL]. Wired Science. (2008-3-23) [2023-01-13] .
96 GASKILL B. SpaceX has magical goals for Falcon 9[EB/OL]. Nasa Spaceflight. (2008-02-28) [2023-01-13]. .
97 NELSON K. SpaceX CRS-1 mission update[EB/OL]. (2016-3-31) [2023-01-13]. .
98 SpaceX. Archived from the original on March 7[EB/OL] (2020-9-4) [2023-01-13]. ∥.
99 Berger, Eric. How a tiny bit of lacquer grounded new Falcon 9 rockets for a month [EB/OL] (2020-10-29) [2023-01-13]. .
100 SpaceX. Falcon 9 [EB/OL]. (2018-2-8) [2023-01-13]. ∥.
101 Falcon SpaceX 9 Data Sheet [EB/OL]. Space Launch Report. (2019-9-21) [2023-01-13]. ∥.
102 Evolution of the SapceX Merlin-1 engine (and parameter) [EB/OL] (2022-2-12) [2023-01-13]. .
103 TODD D. Musk goes for methane-burning reusable rockets as step to colonise Mars[EB/OL]. (2012-11-20) [2023-01-13]. .
104 TODD D. SpaceX's Mars rocket to be methane-fuelled[EB/OL]. Flightglobal. (2012-11-22) [2023-01-13]. .
105 NASA Stennis Space Center to Test SpaceX Next Generation Rocket Engines Systems [EB/OL]. Mississippi development authority. (2013-10-2) [2023-01-13]. .
106 ELLUSCIO A G. ITS Propulsion – The evolution of the SpaceX Raptor engine[EB/OL]. NASASpaceFlight.com. (2021-126) [2023-01-13]. .
107 Ship 20 prepares for Static Fire - New Raptor 2 factory rises[EB/OL]. NASASpaceFlight.com. (2021-10-11) [2023-01-13]. .
108 Musk Elon. 250 tons of force is achievable [EB/OL]. Twitter. (2022-6-12) [2023-01-13] .
109 TREVOR S. Raptor 1 vs Raptor 2: What did spaceX change? [EB/OL]. (2022-7-14) [2023-01-13]. .
110 A SpaceX technician was in a coma for two months after a rocket test accident: Elon Musk’s company, silent [EB/OL] (2022-10-20) [2023-01-13]. .
111 URNES J, YEAGER R. Flight demonstration of the self-repairing flight control system in a NASA F-15 aircraft: AIAA-1991-3106[R]. Reston: AIAA, 1991.
112 BAUMGARTEN G, BUCHHOLZ J, HEINE W. A new reconfiguration concept for flight control systems[C]∥ Guidance, Navigation, and Control Conference. Reston: AIAA, 1995: 9-19.
113 HODEL A, CALLAHAN R. Autonomous reconfigurable control allocation (ARCA) for reusable launch vehicles: AIAA-2002-4777[R]. Reston: AIAA, 2002.
114 SHAFFER P J, ROSS I M, OPPENHEIMER M W, et al. Optimal trajectory reconfiguration and retargeting for reusable launch vehicles[J]. Journal of Guidance, Control, and Dynamics200730(6): 1794-1802.
115 YIKILMAZ C, üRE N K. Deep learning based fault tolerant thrust vector control: AIAA-2022-0970[R]. Reston: AIAA, 2022.
116 周川, 胡维礼, 陈庆伟, 等. 智能重构控制技术及其应用[J]. 系统工程与电子技术200123(6): 59-62.
  ZHOU C, HU W L, CHEN Q W, et al. Method and application of intelligent reconfigurable control[J]. Systems Engineering and Electronics200123(6): 59-62 (in Chinese).
117 朱海洋, 吴燕生, 容易, 等. 适应有限故障的运载火箭神经网络自适应容错控制[J]. 西北工业大学学报202038(3): 668-676.
  ZHU H Y, WU Y S, RONG Y, et al. A neural network adaptive fault-tolerant control method for launch vehicles with the limited faults[J]. Journal of Northwestern Polytechnical University202038(3): 668-676 (in Chinese).
118 马艳如, 石晓荣, 刘华华, 等. 运载火箭姿态系统自适应神经网络容错控制[J]. 宇航学报202142(10): 1237-1245.
  MA Y R, SHI X R, LIU H H, et al. Adaptive neural network fault tolerant control of launch vehicle attitude system[J]. Journal of Astronautics202142(10): 1237-1245 (in Chinese).
119 李爽, 刘旭, 叶松, 等. 运载火箭动力系统故障下制导控制技术研究进展[J]. 上海航天(中英文)2022(4): 76-93.
  LI S, LIU X, YE S, et al. Overview of guidance and control technologies for launch vehicles under propulsion system faults[J]. Aerospace Shanghai (Chinese&English)2022(4): 76-93 (in Chinese).
120 吴建军, 朱晓彬, 程玉强, 等. 液体火箭发动机智能健康监控技术研究进展[J]. 推进技术202243(1): 1-13.
  WU J J, ZHU X B, CHENG Y Q, et al. Research progress of intelligent health monitoring technology for liquid-propellant rocket engines[J]. Journal of Propulsion Technology202243(1): 1-13 (in Chinese).
121 PETTIT C, BARKHOUDARIAN S, DAUMANN J A, et al. Reusable rocket engine advanced health management system: Architecture and technology evaluation-Summary: AIAA-1999-2527[R]. Reston: AIAA, 1999.
122 WU G. A fuzzy logic intelligent diagnostic system for spacecraft integrated vehicle health management: N95-27392[R]. Washington, D.C.: NASA, 1995.
123 FIGUEROA J, MELCHER K. Integrated systems health management for intelligent systems: AIAA-2011-1492[R]. Reston: AIAA, 2011.
124 袁利, 王淑一. 航天器控制系统智能健康管理技术发展综述[J]. 航空学报202142(4): 525044.
  YUAN L, WANG S Y. A review on development of intelligent health management technology for spacecraft control systems[J]. Acta Aeronautica et Astronautica Sinica202142(4): 525044 (in Chinese).
125 王昊义, 吴建军, 张宇, 等. 基于吸气式电推进的智能姿轨控系统: CN112572833A[P]. 2021-03-30.
  WANG H Y, WU J J, ZHANG Y, et al. Intelligent attitude and orbit control system based on air-breathing electric propulsion: CN112572833A[P]. 2021-03-30 (in Chinese).
126 吴建军,郑鹏,张宇 等,一种全电推进立方体卫星 : CN202111595136.8[P]. 2022-03-04.
  WU J J, ZHENG P, ZHANHG Y, et al. An all electric propulsion cube satellite: CN202111595136.8[P]. 2022-03-04 (in Chinese).
127 吴必琦, 吴建军, 程玉强, 等. 可应用于多流态的智能控制吸气式电推进系统: CN110748467B[P]. 2020-08-21.
  吴必琦, 吴建军, 程玉强, 张宇, 李健, 谭胜, 欧阳, 杜忻洳. Intelligent control air suction type electric propulsion system applicable to multi-flow state: CN110748467B[P]. 2020-08-21 (in Chinese).
128 朱炳杰, 杨希祥, 宗建安, 等. 分布式混合电推进飞行器技术[J]. 航空学报202243(7): 025556.
  ZHU B J, YANG X X, ZONG J A, et al. Review of distributed hybrid electric propulsion aircraft technology[J]. Acta Aeronautica et Astronautica Sinica202243(7): 025556 (in Chinese).
129 韩明仁, 王玉峰. 基于强化学习的全电推进卫星变轨优化方法[J]. 系统工程与电子技术202244(5): 1652-1661.
  HAN M R, WANG Y F. Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning[J]. Systems Engineering and Electronics202244(5): 1652-1661 (in Chinese).
130 张远, 黄旭, 路坤锋, 等. 高超声速飞行器控制技术研究进展与展望[J]. 宇航学报202243(7): 866-879.
  ZHANG Y, HUANG X, LU K F, et al. Research progress and prospect of the hypersonic flight vehicle control technology[J]. Journal of Astronautics202243(7): 866-879 (in Chinese).
131 常亚菲, 姜甜甜. 高超声速再入飞行器的特征建模及自适应递推滑模控制[J]. 宇航学报201839(8): 889-899.
  CHANG Y F, JIANG T T. Characteristic modeling and adaptive recursive sliding mode control for hypersonic reentry vehicle[J]. Journal of Astronautics201839(8): 889-899 (in Chinese).
132 王冠, 马长波, 茹海忠, 等. 一种非仿射高超声速飞行器的智能控制方法[J]. 飞控与探测2021(4): 59-65.
  WANG G, MA C B, RU H Z, et al. An intelligent control method for non-affine hypersonic vehicles[J]. Flight Control & Detection2021(4): 59-65 (in Chinese).
133 田维平, 雷晓龙, 唐敏, 等. 固体动力智能化发展技术展望[J]. 固体火箭技术202144(2): 146-150.
  TIAN W P, LEI X L, TANG M, et al. Prospect of the intelligentized solid propulsion technology[J]. Journal of Solid Rocket Technology202144(2): 146-150 (in Chinese).
134 孙明波, 安彬, 汪洪波, 等. 超燃冲压发动机仿真: 从数值飞行到数智飞行[J]. 力学学报202254(3): 588-600.
  SUN M B, AN B, WANG H B, et al. Numerical simulation of the scramjet engine: From numerical flight to intelligent numerical flight[J]. Chinese Journal of Theoretical and Applied Mechanics202254(3): 588-600 (in Chinese).
135 吴宏鑫, 谈树萍. 航天器控制的现状与未来[J]. 空间控制技术与应用201238(5): 1-7.
  WU H X, TAN S P. Spacecraft control: present and future[J]. Aerospace Control and Application201238(5): 1-7 (in Chinese).
136 吴宏鑫, 胡军, 解永春. 航天器智能自主控制研究的回顾与展望[J]. 空间控制技术与应用201642(1): 1-6.
  WU H X, HU J, XIE Y C. Spacecraft intelligent autonomous control: Past, present and future[J]. Aerospace Control and Application201642(1): 1-6 (in Chinese).
137 KLEIN M, HAYOUN D, GONIDEC S L, et al. Method and a circuit for regulating a rocket engine: US20170101963A1[P]. 2017.
138 GONIDEC S L. Device for controlling a regulated system, and an engine including such a device: US8005554[P]. 2011.
139 GONIDEC L E. Method for controlling the pressure and a mixture ratio of a rocket engine, and corresponding device: EP3332108A1[P]. 2015.
140 张守武, 王恒, 陈鹏, 等. 神经网络在无人驾驶车辆运动控制中的应用综述[J]. 工程科学学报202244(2): 235-243.
  ZHANG S W, WANG H, CHEN P, et al. Overview of the application of neural networks in the motion control of unmanned vehicles[J]. Chinese Journal of Engineering202244(2): 235-243 (in Chinese).
141 程林, 蒋方华, 李俊峰. 深度学习在飞行器动力学与控制中的应用研究综述[J]. 力学与实践202042(3): 267-276.
  CHENG L, JIANG F H, LI J F. A review on the applications of deep learning in aircraft dynamics and control[J]. Mechanics in Engineering202042(3): 267-276 (in Chinese).
142 XU X, HU D W, HE H G. Accelerated reinforcement learning control using modified CMAC neural networks[C]∥ Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02. Piscataway: IEEE Press, 2003: 2575-2578.
143 XU X, LIAN C Q, ZUO L, et al. Kernel-based approximate dynamic programming for real-time online learning control: An experimental study[J]. IEEE Transactions on Control Systems Technology201422(1): 146-156.
144 LU Y, XU X, ZHANG X L, et al. Hierarchical reinforcement learning for autonomous decision making and motion planning of intelligent vehicles[J]. IEEE Access20208: 209776-209789.
145 ZHANG X L, PENG Y Q, LUO B, et al. Model-based safe reinforcement learning with time-varying state and control constraints: An application to intelligent vehicles [J]. Journal of Latex Class Filtes202114(8) :1-14.
文章导航

/