高超声速飞行器快速终端滑模保性能容错控制
收稿日期: 2023-01-05
修回日期: 2023-02-01
录用日期: 2023-03-07
网络出版日期: 2023-03-17
基金资助
国家自然科学基金青年基金项目(62003372);湖南省自然科学基金青年基金项目(2022JJ40633);装备预研教育部联合基金(8091B032134)
Fast terminal sliding mode fault⁃tolerant control of hypersonic vehicle with guaranteed performance
Received date: 2023-01-05
Revised date: 2023-02-01
Accepted date: 2023-03-07
Online published: 2023-03-17
Supported by
National Natural Science Foundation of China(62003372);Natural Science Foundation of Hunan Province(2022JJ40633);Joint Fund of the Ministry of Education for Equipment Pre-research(8091B032134)
针对高超声速飞行器在模型不确定、外部干扰和执行机构故障影响下的姿态控制问题,提出了一种考虑预设性能的非奇异快速终端滑模容错控制方法。首先,基于姿态运动模型和执行机构故障模型建立了面向容错控制的模型,并利用预设性能函数对姿态跟踪误差系统的瞬态和稳态性能进行定量化设计;其次,设计了新型滑模干扰观测器对由模型不确定、外部干扰和执行机构故障组成的复合干扰进行精确估计;然后,以复合干扰的估计值作为补偿设计了非奇异快速终端滑模容错控制器,并利用Lyapunov稳定性理论证明了闭环系统的稳定性;最后,仿真结果验证了该方法具有较好的容错性能。
关键词: 高超声速飞行器; 姿态容错控制; 滑模干扰观测器; 非奇异快速终端滑模控制; 预设性能控制
王忠森 , 廖宇新 , 魏才盛 , 戴婷 . 高超声速飞行器快速终端滑模保性能容错控制[J]. 航空学报, 2023 , 44(24) : 328476 -328476 . DOI: 10.7527/S1000-6893.2023.28476
Aiming at the attitude control problem of hypersonic vehicle under the influence of model uncertainties, external disturbances and actuator faults, a non-singular fast terminal sliding mode fault-tolerant control method considering prescribed performance is proposed. Firstly, a fault-tolerant control model is established based on the attitude motion model and the actuator faults model, and the transient and steady-state performance of the attitude tracking error system is quantitatively designed by using the prescribed performance function. Secondly, a novel sliding mode disturbance observer is designed to accurately estimate the compound disturbances composed of model uncertainties, external disturbances and actuator faults. Then, a non-singular fast terminal sliding mode fault-tolerant controller is designed with the estimated value of the compound disturbances as compensation, and the stability of the closed-loop system is proved by the Lyapunov stability theory. Finally, simulation results show that the proposed method has good fault tolerance performance.
1 | 宗群, 曾凡琳, 张希彬. 高超声速飞行器建模与模型验证[M]. 北京: 科学出版社, 2016: 8-15. |
ZONG Q, ZENG F L, ZHANG X B. Modeling and model verification of hypersonic vehicle[M]. Beijing: Science Press, 2016: 8-15 (in Chinese). | |
2 | XU B, SHI Z K. An overview on flight dynamics and control approaches for hypersonic vehicles[J]. Science China Information Sciences, 2015, 58(7): 1-19. |
3 | HU K Y, YANG C X, SUN W J. Adaptive sliding mode fault compensation for sensor faults of variable structure hypersonic vehicle[J]. Sensors, 2022, 22(4): 1523. |
4 | WANG F, HUA C C, ZONG Q. Novel smooth sliding mode attitude control design for constrained re-entry vehicle based on disturbance observer[J]. International Journal of Systems Science, 2019, 50(1): 75-90. |
5 | TIAN B L, LU H C, ZUO Z Y, et al. Multivariable uniform finite-time output feedback reentry attitude control for RLV with mismatched disturbance[J]. Journal of the Franklin Institute, 2018, 355(8): 3470-3487. |
6 | WEI C Z, WANG M Z, LU B G, et al. Accelerated Landweber iteration based control allocation for fault tolerant control of reusable launch vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(2): 175-184. |
7 | SUN J G, SONG S M, PENG-LI, et al. Adaptive anti- saturation fault-tolerant control of hypersonic vehicle with actuator faults[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(6): 2066-2083. |
8 | YANG Z S, MAO Q, DOU L Q, et al. Composite design of disturbance observer and reentry attitude controller: An enhanced finite-time technique for aeroservoelastic reusable launch vehicles[J]. International Journal of Control, Automation and Systems, 2022, 20(8): 2459-2473. |
9 | LI T, JIANG Z Y, YANG H B, et al. Reconfigurable fault-tolerant control for supersonic missiles with actuator failures under actuation redundancy[J]. Chinese Journal of Aeronautics, 2020, 33(1): 324-338. |
10 | ZHAO J, JIANG B, XIE F, et al. Adaptive sliding mode backstepping control for near space vehicles considering engine faults[J]. Journal of Systems Engineering and Electronics, 2018, 29(2): 343-351. |
11 | WANG X H, TAN C P. Fault-tolerant spacecraft attitude control under actuator saturation and without angular velocity[J]. International Journal of Robust and Nonlinear Control, 2019, 29(18): 6483-6506. |
12 | ZHAI R Y, QI R Y, ZHANG J R. Compound fault-tolerant attitude control for hypersonic vehicle with reaction control systems in reentry phase[J]. ISA Transactions, 2019, 90: 123-137. |
13 | 常晶, 周军. 一种基于时变干扰观测器的高超声速飞行器容错控制策略设计[J]. 控制与决策, 2018, 33(10): 1893-1900. |
CHANG J, ZHOU J. A FTC scheme for hypersonic vehicle based on adaptive disturbance observer[J]. Control and Decision, 2018, 33(10): 1893-1900 (in Chinese). | |
14 | 刘武, 吴云燕, 刘玮, 等. 考虑未知扰动的RLV再入鲁棒容错姿态控制[J]. 航空学报, 2023, 44(S1): 169-176. |
LIU W, WU Y Y, LIU W, et al. Re-entry robust fault tolerant attitude control for RLVs considering unknown disturbances[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 169-176 (in Chinese). | |
15 | LIANG X H, WANG Q, HU C H, et al. Fixed-time observer based fault tolerant attitude control for reusable launch vehicle with actuator faults[J]. Aerospace Science and Technology, 2020, 107: 106314. |
16 | MENG Y Z, JIANG B, QI R Y, et al. Fault-tolerant anti-windup control for hypersonic vehicles in reentry based on ISMDO[J]. Journal of the Franklin Institute, 2018, 355(5): 2067-2090. |
17 | 马广富, 朱庆华, 王鹏宇, 等. 基于终端滑模的航天器自适应预设性能姿态跟踪控制[J]. 航空学报, 2018, 39(6): 321763. |
MA G F, ZHU Q H, WANG P Y, et al. Adaptive prescribed performance attitude tracking control for spacecraft via terminal sliding-mode technique[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 321763 (in Chinese). | |
18 | 殷泽阳, 罗建军, 魏才盛, 等. 非合作航天器姿态接管无辨识预设性能控制[J]. 航空学报, 2018, 39(11): 322022. |
YIN Z Y, LUO J J, WEI C S, et al. Estimation-free and prescribed performance control of attitude takeover for non-cooperative spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 322022 (in Chinese). | |
19 | ZHAO S Y, LI X B, BU X W, et al. Prescribed performance tracking control for hypersonic flight vehicles with model uncertainties[J]. International Journal of Aerospace Engineering, 2019, 2019: 1-11. |
20 | 李小兵, 赵思源, 卜祥伟, 等. 高超声速飞行器保预设性能的反演控制方法[J]. 国防科技大学学报, 2020, 42(1): 73-83. |
LI X B, ZHAO S Y, BU X W, et al. Backstepping control method for hypersonic vehicles to guarantee prescribed performance[J]. Journal of National University of Defense Technology, 2020, 42(1): 73-83 (in Chinese). | |
21 | HU Q L, SHAO X D, GUO L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 331-341. |
22 | WU T C, WANG H L, YU Y, et al. Hierarchical fault-tolerant control for over-actuated hypersonic reentry vehicles[J]. Aerospace Science and Technology, 2021, 119: 107134. |
23 | TIAN B L, FAN W R, SU R, et al. Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Transactions on Industri al Electronics, 2015, 62(3): 1639-1650. |
24 | ZHANG L, WEI C Z, WU R, et al. Adaptive fault-tolerant control for a VTVL reusable launch vehicle[J]. Acta Astronautica, 2019, 159: 362-370. |
25 | JIANG B Y, HU Q L, FRISWELL M I. Fixed-time rendezvous control of spacecraft with a tumbling target under loss of actuator effectiveness[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(4): 1576-1586. |
26 | YANG P, SU Y X. Proximate fixed-time prescribed performance tracking control of uncertain robot manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(5): 3275-3285. |
27 | TIAN B L, LI Z Y, ZHAO X P, et al. Adaptive multivariable reentry attitude control of RLV with prescribed performance[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(10): 6674-6678. |
28 | 李惠峰, 肖进, 林平. 基于参数化外形的通用大气飞行器建模与分析[J]. 宇航学报, 2011, 32(11): 2305-2311. |
LI H F, XIAO J, LIN P. Modeling and analyzing of common aero vehicle with parametric configuration[J]. Journal of Astronautics, 2011, 32(11): 2305-2311 (in Chinese). |
/
〈 |
|
〉 |