等离子体合成射流主动控制平面叶栅叶片流致振动
收稿日期: 2022-12-26
修回日期: 2023-01-12
录用日期: 2023-02-22
网络出版日期: 2023-03-03
基金资助
中央高校基本科研业务费专项资金(20720210050);国家自然科学基金(51707169);中国航空发动机集团产学研合作项目(HFZL2018CXY009);航空动力基金(6141B09050390)
Active control of flow-induced vibration of blades in a plane cascade by a plasma synthetic jet
Received date: 2022-12-26
Revised date: 2023-01-12
Accepted date: 2023-02-22
Online published: 2023-03-03
Supported by
Fundamental Research Funds for the Central Universities of China(20720210050);National Natural Science Foundation of China(51707169);Project on the Integration of Industry, Education and Research of Aero Engine Corporation of China(HFZL2018CXY009);Aeroengine Science Foundation of China(6141B09050390)
压气机转子叶片的叶尖间隙泄漏涡是造成其振动故障的重要诱因。为抑制叶尖间隙泄漏涡诱发的叶片振动强度,通过平面叶栅风洞试验,捕捉叶片振动现象,分析振动模态特征,测量叶尖间隙涡的流动结构。进而,利用等离子体合成射流主动控制叶尖间隙泄漏涡,抑制叶片流致振动强度,并探究了不同射流布局和激励频率的控制效果,厘清了控制机理。研究结果表明:在来流速度为30 m/s,叶片安装角为15°时,叶片发生了共振。叶尖间隙泄漏涡沿流向0.25及0.50倍弦长横截面为等离子体合成射流主动控制关键位置。在0.50倍弦长截面,相较于朝叶尖端面和叶背喷射,朝叶盆方向喷射的等离子体合成射流控制振动的效果最佳。在激励频率为220 Hz时,减小叶片振动应力达31.6%。其控制机理是等离子体合成射流干预了叶尖间隙泄漏流的启动,减小了叶片压力面和吸力面的压力梯度,抑制了叶尖泄漏涡的形成和发展,从而降低了泄漏涡的强度,减小了诱发叶片振动的激振力。
刘汝兵 , 陈泽帆 , 林瑞鑫 , 林麒 . 等离子体合成射流主动控制平面叶栅叶片流致振动[J]. 航空学报, 2023 , 44(20) : 128430 -128430 . DOI: 10.7527/S1000-6893.2023.28430
The tip gap leakage vortex of the compressor rotor blade is an important cause of its vibration failure. To suppress the blade vibration intensity induced by tip clearance leakage vortex, through the planar blade grid wind tunnel test, the blade vibration phenomenon is captured. The vibration mode characteristics are analyzed, and the flow structure of the blade tip gap vortex is measured. Then, the plasma synthesis jet is used to actively control the leakage vortex between blade tips and suppress the vibration caused by the blade. The control effects of different jet layouts and excitation frequencies are explored, and the control mechanism is clarified. The results show that when the incoming flow velocity is 30 m/s and the blade installation angle is 15°, blade resonance occurs. The interstitial leakage vortex of the tip gap flows 0.25 and 0.50 times the chord length cross-section, which is the key position for active control of the plasma synthesis jet. At 0.50 times the chord length cross-section, plasma synthetic jets sprayed in the direction of the blade basin control vibration best compared to the spraying towards the tip and back of the leaf. At the excitation frequency of 220 Hz, the vibration stress of the blade is reduced by 31.6%. The control mechanism is that the plasma synthesis jet intervenes in the initiation of the leakage flow between the blade tip, reduces the pressure gradient of the blade pressure surface and the suction surface, inhibits the formation and development of the tip leakage vortex, thereby reducing the strength of the leakage vortex and reducing the excitation force that induces blade vibration.
1 | 杨硕, 刘杭, 霍延利, 等. 航空发动机叶片裂纹扩展规律数值模拟研究[J]. 兵器装备工程学报, 2022, 43(8): 180-185. |
YANG S, LIU H, HUO Y L, et al. Numerical simulation of crack propagation for aero-engine blade[J]. Journal of Ordnance Equipment Engineering, 2022, 43(8): 180-185 (in Chinese). | |
2 | 洪志亮, 赵国昌, 杨明绥, 等. 航空发动机压气机内部流体诱发声共振研究进展[J]. 航空学报, 2019, 40(11): 023139. |
HONG Z L, ZHAO G C, YANG M S, et al. Development of flow-induced acoustic resonance in aeroengine compressors[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(11): 023139 (in Chinese). | |
3 | 王增增, 马宏伟. 航空发动机轴流压气机非整阶振动实验研究进展[J]. 航空动力学报, 2022, 37(11): 2416-2429. |
WANG Z Z, MA H W. Overview of experimental research on non-synchronous vibration in aero-engine axial compressor[J]. Journal of Aerospace Power, 2022, 37(11): 2416-2429 (in Chinese). | |
4 | DONG X, ZHANG Z Q, ZHANG Y J, et al. High-frequency unsteady flow near the tip in a transonic fan rotor with a small clearance[J]. Aerospace Science and Technology, 2020, 106: 106211. |
5 | MAILACH R, LEHMANN I, VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 2001, 123: 453-460. |
6 | VO H D. Role of tip clearance flow in rotating instabilities and nonsynchronous vibrations[J]. Journal of Propulsion and Power, 2010, 26(3): 556-561. |
7 | FURUKAWA M, SAIKI K, YAMADA K, et al. Unsteady flow behavior due to breakdown of tip leakage vortex in an axial compressor rotor at near-stall condition[R]. New York: ASME, 2000. |
8 | YAMADA K, FUNAZAKI K, SASAKI H. Numerical investigation of relation between unsteady behavior of tip leakage vortex and rotating disturbance in a transonic axial compressor rotor[R]. New York: ASME, 2009. |
9 | MA¨RZ J, HAH C, NEISE W. An experimental and numerical investigation into the mechanisms of rotating instability[J]. Journal of Turbomachinery, 2002, 124(3): 367-374. |
10 | HOLZINGER F, WARTZEK F, JüNGST M, et al. Self-excited blade vibration experimentally investigated in transonic compressors: Rotating instabilities and flutter[J]. Journal of Turbomachinery, 2016, 138(4): 041006. |
11 | KAMEIER F, NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery, 1997, 119(3): 460-471. |
12 | 黎霖, 卯鲁秦, 连健欣, 等. 锯齿尾缘构型降低圆柱-叶栅干涉噪声的实验研究[J]. 推进技术, 2023, 44(2): 163-176. |
LI L, MAO L Q, LIAN J X, et al. Experimental study on reducing cylinder-cascade interference noise with serrated trailing edge configuration[J]. Journal of Propulsion Technology, 2023, 44(2): 163-176 (in Chinese). | |
13 | 张文强, 李继超, 李钢, 等. 跨声轴流压气机等离子体控制实验[J]. 航空动力学报, 2016, 31(7): 1719-1724. |
ZHANG W Q, LI J C, LI G, et al. Experiments of plasma flow control in a transonic axial compressor[J]. Journal of Aerospace Power, 2016, 31(7): 1719-1724 (in Chinese). | |
14 | 张健, 杜娟, 陈泽, 等. 高负荷压气机叶栅流动分离的主动控制方法综述[J]. 工程热物理学报, 2022, 43(5): 1190-1202. |
ZHANG J, DU J, CHEN Z, et al. Active flow control concepts of secondary flow on a highly loaded compressor cascade[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1190-1202 (in Chinese). | |
15 | 王晓明, 周文雅, 寻广彬, 等. 带有振动抑制的压电结构动态形状主动控制[J]. 宇航学报, 2017, 38(2): 185-191. |
WANG X M, ZHOU W Y, XUN G B, et al. Dynamic shape control of piezoelectric structures with vibration suppression[J]. Journal of Astronautics, 2017, 38(2): 185-191 (in Chinese). | |
16 | LIU B, LIANG H, ZHENG B R. Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing[J]. Plasma Science and Technology, 2022, 25(1): 015503. |
17 | LI Y H, WU Y, ZHOU M, et al. Control of the corner separation in a compressor cascade by steady and unsteady plasma aerodynamic actuation[J]. Experiments in Fluids, 2010, 48(6): 1015-1023. |
18 | SADDOUGHI S, BENNETT G, BOESPFLUG M, et al. Experimental investigation of tip clearance flow in a transonic compressor with and without plasma actuators[R]. New York: ASME, 2014. |
19 | ZHANG H D, WU Y, LI Y H, et al. Control of compressor tip leakage flow using plasma actuation[J]. Aerospace Science and Technology, 2019, 86: 244-255. |
20 | GROSSMAN K R, CYBYK B Z, VANWIE D M. Sparkjet actuators for flow control: AIAA-2003-0057 [R]. Reston: AIAA, 2003. |
21 | 李应红, 吴云, 梁华, 等. 等离子体激励气动力学探索与展望[J]. 力学进展, 2022, 52(1): 1-32. |
LI Y H, WU Y, LIANG H, et al. Exploration and outlook of plasma-actuated gas dynamics[J]. Advances in Mechanics, 2022, 52(1): 1-32 (in Chinese). | |
22 | 李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学: 技术科学, 2020, 50(10): 1252-1273. |
LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252-1273 (in Chinese). | |
23 | LIU R B, WEI W T, WAN H P, et al. Experimental study on airfoil flow separation control via an air-supplement plasma synthetic jet[J]. Advances in Aerodynamics, 2022, 4: 34. |
24 | XIE W, LUO Z B, ZHOU Y, et al. Experimental and numerical investigation on opposing plasma synthetic jet for drag reduction[J]. Chinese Journal of Aeronautics, 2022, 35(8): 75-91. |
25 | 孙健, 牛中国, 刘汝兵, 等. 基于等离子体合成射流的飞翼布局模型主动流动控制风洞实验研究[J]. 实验流体力学, 2019, 33(4): 81-88. |
SUN J, NIU Z G, LIU R B, et al. The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 81-88 (in Chinese). | |
26 | 高婉宁, 张悦, 谭慧俊, 等. 超声速条件下等离子体合成射流对鼓包诱导流场的影响[J]. 推进技术, 2021, 42(3): 532-539. |
GAO W N, ZHANG Y, TAN H J, et al. Effects of plasma synthetic jet on bump-induced flow field under supersonic condition[J]. Journal of Propulsion Technology, 2021, 42(3): 532-539 (in Chinese). | |
27 | XIE W, LUO Z B, ZHOU Y, et al. Experimental study on shock wave control in high-enthalpy hypersonic flow by using SparkJet actuator[J]. Acta Astronautica, 2021, 188: 416-425. |
28 | ZHANG W W, LI X T, YE Z Y, et al. Mechanism of frequency lock-in in vortex-induced vibrations at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2015, 783: 72-102. |
29 | 张志远. 压气机叶栅叶尖涡系结构及非定常流动控制研究[D]. 南京: 南京航空航天大学, 2018. |
ZHANG Z Y. Research on the tip vortex structure and unsteady flow control of compressor cascade[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
30 | BINDON J P. The measurement and formation of tip clearance loss[J]. Journal of Turbomachinery, 1989, 111(3): 257-263. |
31 | 高丽敏, 刘思余, 李永增, 等. 扩压叶栅叶顶间隙流动结构研究[J]. 工程热物理学报, 2020, 41(2): 329-334. |
GAO L M, LIU S Y, LI Y Z, et al. Investigation of the structure of cascade tip clearance flowfield[J]. Journal of Engineering Thermophysics, 2020, 41(2): 329-334 (in Chinese). | |
32 | ZONG H H, KOTSONIS M. Effect of velocity ratio on the interaction between plasma synthetic jets and turbulent cross-flow[J]. Journal of Fluid Mechanics, 2019, 865: 928-962. |
33 | 林麒, 林瑞鑫, 刘汝兵, 等. 一种能够削弱转子叶片声激振的轴流式压气机: CN215444448U[P]. 2022-01-07. |
LIN Q, LIN R X, LIU R B, et al. Axial-flow type gas compressor capable of weakening sound excitation vibration of rotor blades: CN215444448U[P]. 2022-01-07 (in Chinese). | |
34 | ZONG H H, VAN PELT T, KOTSONIS M. Airfoil flow separation control with plasma synthetic jets at moderate Reynolds number[J]. Experiments in Fluids, 2018, 59: 169. |
/
〈 |
|
〉 |