油滴与高温固体壁面碰撞的动态铺展与传热
收稿日期: 2022-11-24
修回日期: 2022-12-26
录用日期: 2023-02-03
网络出版日期: 2023-02-17
基金资助
国家自然科学基金(51475395);制造过程测试技术教育部重点实验室开放基金(14tdzk04)
Dynamic spreading and heat transfer of oil droplet impacting on a heated wall
Received date: 2022-11-24
Revised date: 2022-12-26
Accepted date: 2023-02-03
Online published: 2023-02-17
Supported by
National Natural Science Foundation of China(51475395);Opening Project of Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education(14tdzk04)
机械零部件的喷油和滴油润滑方式下,油滴与零件表面碰撞后形成附着油膜的流动与传热特性极大地影响着零件的润滑与散热状态。考虑油滴热力学特征参数受温度影响,采用VOF(Volume of Fluid)方法建立了油滴与高温固体壁面碰撞的流动与传热三维数值分析模型,分析了油滴与高温固体壁面碰撞后的形貌演化与油膜/壁面间的热量传递等动力学和热力学行为,通过试验验证了数值分析模型的正确性,探讨了碰撞速度、壁面温度和油液温度对油膜动态铺展和传热的影响。结果表明:油滴与高温固体壁面碰撞后,少量“卷吸”空气滞留于铺展油膜中心形成气泡,气泡上浮至油膜表面后发生“溃灭”;最大铺展直径的油膜呈中心平直、边缘凸起的圆盘状;油膜、空气和高温壁面三相接触线附近热交换较为剧烈,油膜边缘局部热流密度明显高于其他位置,且随铺展进程推进变得更加显著;无量纲铺展因子随碰撞速度和油液温度的升高而增大,受壁面温度的影响却不明显;提高碰撞速度和壁面温度有利于油膜与高温壁面的换热,壁面平均热流密度增大;最大铺展直径时,随碰撞速度、壁面温度和油液温度的升高,油膜径向热流密度是增大的。
陈薄 , 贾飞 , 马兴裕 . 油滴与高温固体壁面碰撞的动态铺展与传热[J]. 航空学报, 2023 , 44(17) : 128307 -128307 . DOI: 10.7527/S1000-6893.2023.28307
The lubrication and cooling states of mechanical parts under spray and drip lubrication conditions are dramatically influenced by the flow and heat transfer characteristics of the film formed by the impingement of oil droplet with parts surface. A three-dimensional numerical calculation model of the flow and heat transfer concerning a droplet impacting on a heated solid wall with the consideration of the correlation between the thermodynamic feature parameters of oil droplet and temperature is proposed using VOF (Volume of Fluid) method to predict numerically the droplet morphology evolution, and the heat transfer between film and heated surface. The correctness of the presented model is demonstrated by comparison of the numerical results with experimental data. The effects of incident velocity, wall temperature and droplet temperature are discussed in detail. The results show that inside the center of the spreading film a lone bubble is formed by air entrapment between droplet and solid wall during the initial stages of impact, and then the bubble collapses and escapes into the air when it floats upward to the film surface. The film at the maximum spreading diameter appears to be a plate with a flat center region and a protruding rim. The drastic heat exchange occurs in the vicinity of three-phase contact line of film, air and heated wall, so that local heat flux near the film rim is significantly greater than that of other region inside the spreading film, and the phenomenon becomes more remarkably with the spreading process. The dimensionless spreading factor increases with the increase of the incident velocity and the droplet temperature, and seems to affect insignificantly by the wall temperature. The increased incident velocity and wall temperature contribute to the heat transfer between film and heated wall, so the average heat flux at the solid surface increases obviously. The radial heat flux in the film at the maximum spreading diameter increases with the incident velocity and the wall temperature.
1 | LIANG G T, SHEN S Q, GUO Y L, et al. Boiling from liquid drops impact on a heated wall[J]. International Journal of Heat and Mass Transfer, 2016, 100: 48-57. |
2 | BERTOLA V. An impact regime map for water drops impacting on heated surfaces[J]. International Journal of Heat and Mass Transfer, 2015, 85: 430-437. |
3 | MA Q, WU X M, LI T. Droplet impact on superheated surfaces with different wettabilities[J]. International Journal of Heat and Mass Transfer, 2019, 141: 1181-1186. |
4 | GUGGILLA G, NARAYANASWAMY R, PATTAM? ATTA A. An experimental investigation into the spread and heat transfer dynamics of a train of two concentric impinging droplets over a heated surface[J]. Experimental Thermal and Fluid Science, 2020, 110: 109916. |
5 | GUO C F, MAYNES D, CROCKETT J, et al. Heat transfer to bouncing droplets on superhydrophobic surfaces[J]. International Journal of Heat and Mass Transfer, 2019, 137: 857-867. |
6 | BHAT M, SAKTHIKUMAR R, SIVAKUMAR D. Fuel drop impact on heated solid surface in film evaporation regime[J]. Chemical Engineering Science, 2019, 202: 95-104. |
7 | GE Y, FAN L S. 3-D modeling of the dynamics and heat transfer characteristics of subcooled droplet impact on a surface with film boiling[J]. International Journal of Heat and Mass Transfer, 2006, 49(21-22): 4231-4249. |
8 | CHENG Y P, WANG F, XU J L, et al. Numerical investigation of droplet spreading and heat transfer on hot substrates[J]. International Journal of Heat and Mass Transfer, 2018, 121: 402-411. |
9 | GELISSEN E J, VAN DER GELD C W M, BALTUSSEN M W, et al. Modeling of droplet impact on a heated solid surface with a diffuse interface model[J]. International Journal of Multiphase Flow, 2020, 123: 103173. |
10 | WANG L L, RONG S, SHEN S Q, et al. Interface oscillation of droplets upon impact on a heated surface in the Leidenfrost state[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119116. |
11 | 刘登, 陈国定, 方龙, 等. 运动油滴/固体壁面斜碰撞的状态辨识及特征分析[J]. 航空学报, 2015, 36(4): 1359-1366. |
LIU D, CHEN G D, FANG L, et al. State identification and characteristics analysis of oil droplet’s oblique impact onto solid wall[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4): 1359-1366 (in Chinese). | |
12 | WEN T, LU L, HE W F, et al. Fundamentals and applications of CFD technology on analyzing falling film heat and mass exchangers: A comprehensive review[J]. Applied Energy, 2020, 261: 114473. |
13 | ANDERSON J D. Computational fluid dynamics: The basics with applications[M]. New York: McGraw-Hill, 1995. |
14 | JIANG M C, ZHOU B, WANG X C. Comparisons and validations of contact angle models[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6364-6378. |
15 | LIANG G T, ZHANG T Y, CHEN Y, et al. Two-phase heat transfer of multi-droplet impact on liquid film[J]. International Journal of Heat and Mass Transfer, 2019, 139: 832-847. |
16 | BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
17 | 周超, 古忠涛, 陈薄, 等. 油滴/金属壁面正碰撞的油膜动力学特性[J]. 航空动力学报, 2019, 34(7): 1607-1614. |
ZHOU C, GU Z T, CHEN B, et al. Oil film dynamic characteristics during oil droplet’s normal impact onto metallic surface[J]. Journal of Aerospace Power, 2019, 34(7): 1607-1614 (in Chinese). | |
18 | THEODORAKAKOS A, BERGELES G. Simulation of sharp gas-liquid interface using VOF method and adaptive grid local refinement around the interface[J]. International Journal for Numerical Methods in Fluids, 2004, 45(4): 421-439. |
19 | 航空发动机设计手册总编委会. 航空发动机设计手册: 第12册——传动系统与润滑[M]. 北京: 航空工业出版社, 2002. |
Editor-in-Chief of Aero Engine Design Manual. Aero engine design manual: Volume 12—Transmission system and lubrication[M]. Beijing: Aviation Industry Press, 2002 (in Chinese). | |
20 | CEN C Z, WU H, LEE C F, et al. Experimental investigation on the characteristic of jet break-up for butanol droplet impacting onto a heated surface in the film boiling regime[J]. International Journal of Heat and Mass Transfer, 2018, 123: 129-136. |
21 | FUJIMOTO H, DOI R, TAKUDA H. An experimental study on the oblique collisions of water droplets with a smooth hot solid[J]. Journal of Fluids Engineering, 2012, 134(7): 071301. |
22 | 马兴裕, 陈薄, 周超. 油滴与铝合金壁面的碰撞试验[J]. 航空动力学报, 2021, 36(9): 1851-1860. |
MA X Y, CHEN B, ZHOU C. Experiment of oil droplet impacting on aluminium alloy surface[J]. Journal of Aerospace Power, 2021, 36(9): 1851-1860 (in Chinese). | |
23 | LIPSON N, CHANDRA S. Cooling of porous metal surfaces by droplet impact[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119494. |
24 | BOUWHUIS W, VAN DER VEEN R C A, TRAN T, et al. Maximal air bubble entrainment at liquid-drop impact[J]. Physical Review Letters, 2012, 109(26): 264501. |
/
〈 |
|
〉 |