考虑地形起伏的机载SAR测绘航线规划方法

  • 肖友刚 ,
  • 满香娜 ,
  • 伍国华 ,
  • 罗启章
展开
  • 1. 中南大学交通运输工程学院
    2. 中南大学,复杂系统智能决策研究中心
    3. 中南大学

收稿日期: 2022-10-20

  修回日期: 2023-02-06

  网络出版日期: 2023-02-10

基金资助

国家自然科学基金

path planning method for UAV-borne SAR considering terrain

  • XIAO You-Gang ,
  • MAN Xiang-Na ,
  • WU Guo-Hua ,
  • LUO Qi-Zhang
Expand

Received date: 2022-10-20

  Revised date: 2023-02-06

  Online published: 2023-02-10

摘要

合成孔径雷达(SAR)能够不受天气、时间影响地获取高分辨率图像,因此被广泛用于测绘、灾害监测、环境监测、资源侦察等领域。由于SAR是侧视成像,在复杂的地形中雷达波束会被障碍物遮挡从而形成叠掩和阴影,这样不仅会造成数据的缺失而且会加重后续对数据处理的工作负担。针对以上问题,在进行无人机航线规划时,通常要保证相邻航带的重叠率来减少叠掩和阴影对图像质量的影响。为了在减少重叠率的同时保证高质量的成像,本文研究了考虑地形起伏的SAR测绘航线规划问题,将旁向重叠度、覆盖率和叠掩阴影率作为评价指标,提出了基于模拟退火算法的机载SAR测绘航线规划方法,并展开仿真实验对提出的方法进行验证。实验结果表明,本文所提出的方法能够将航带的旁向重叠度均控制在设定值以内,并使覆盖率达到90%以上,航线数量相比于以平均高度面为基准设计航线的方法降低了31.21%,测区覆盖率相比于完全不考虑地形的航线设计方法提高了84.80%;相比于Greedy算法在几何形变率和冗余航线数量上分别降低了8.73%,减少了100%。

本文引用格式

肖友刚 , 满香娜 , 伍国华 , 罗启章 . 考虑地形起伏的机载SAR测绘航线规划方法[J]. 航空学报, 0 : 0 -0 . DOI: 10.7527/S1000-6893.2023.28143

Abstract

Synthetic aperture radar (SAR) can obtain high-resolution images regardless of the influence of weather and time, therefore it is widely used in mapping, disaster monitoring, environmental monitoring, resource reconnaissance, etc. Due to the side-view imaging of SAR, the radar beam will be blocked by obstacles in some complex terrains, resulting in layover and shadow. It will not only cause data missing but also aggravate the workload of subsequent data pro-cessing. For the above problems, it is usually necessary to ensure the overlap ratio of adjacent flight swaths to reduce the influence of layover and shadow on image quality when planning the path of the UAV-borne SAR. To reduce the overlap ratio while ensuring high-quality images, this paper studies the SAR mapping path planning problem consider-ing terrains. Taking lateral overlap ratio, coverage ratio, and overlap ratio as evaluation targets, a UAV-borne SAR mapping path planning method based on simulated annealing is proposed. Besides, simulation experiments are car-ried out to verify the proposed method. The experimental results show that the method proposed can control the lat-eral overlap ratio of flight swath within the set value, and make the coverage ratio reach more than 90%. The number of paths decreased by 31.21% compared with the method of designing path based on the average altitude plane, and the coverage ratio of test area increased by 84.8% compared with the path designing method without considering the terrain. Also, geometric deformation ratio and the number of redundant paths are reduced by 8.73% and 100% respectively compared with Greedy algorithm.

参考文献

[1]LIU T, Xu P, ZHANG S.A review of recent ad-vances in scanned topographic map processing[J].Neu-rocomputing, 2019, 328(1):75-87 [2]YANG Z, YU X, DEDMAN S, et al.UAV remote sensing applications in marine monitoring: Knowledge visu-alization and review[J].Science of The Total Environment, 2022, 838(1):155939-155939 [3]BHARDWJ A, SAM L, AKANKSHA, et al.UAVs as remote sensing platform in glaciology: Present applica-tions and future prospects[J].Remote Sensing of Envi-ronment, 2016, 175(1):196-204 [4]HASHEMI-BENI L, JONES J, THOMPOSON G, et al.Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Manage-ment: A Case of Princeville,North Carolina[J].Sensors, 2018, 18(11):3843-3843 [5] CARAMIHALE T, DAN P, ICHIM L.Flood areas detec-tion based on UAV surveillance system[C]. 19th Inter-national Conference on System Theory, Control and Computing (ICSTCC), 2015. [6]YU R, LYU M, LU J, et al.Spatial Coordinates Correc-tion Based on Multi-Sensor Low-Altitude Remote Sens-ing Image Registration for Monitoring Forest Dynam-ics[J].IEEE Access, 2020, 8(1):1-1 [7]Lu Sun;Liangtian Wan;Xianpeng Wang.Learning-Based Resource Allocation Strategy for Indus-trial IoT in UAV-Enabled MEC Systems[J].IEEE Transactions on Industrial Informatics, 2021, 17(7):5031-5040 [8]PEREZ-ORTIZ M, MANUEL PENA J, ANTONIO GUTIERREZ P, et al.Selecting patterns and features for between- and within- crop-row weed mapping using UAV-imagery[J].Expert Systems with Applications An International Journal, 2016, 47(Apr.1):85-94 [9]HUANG Y, REDDY K N, FLETCHER R S, et al.UAV Low-Altitude Remote Sensing for Precision Weed Man-agement[J].Weed Technology, 2017, 1(1):1-15 [10]王军锋, 乔明, 魏育成, 等.无人机机载在地理国情监测中的应用研究[J].测绘与空间地理信息, 2016, 39(05):61-64 [11]WANG J F, QIAO M, WEI Y C, et al.Geographical Situation Monitoring Applications Based on the UAV Airborne SAR[J].Geomatics & Spatial Information Technology, 2016, 39(05):61-64 [12]SHU G, CHANG J, LU J, et al.A Novel Method for SAR Ship Detection Based on Eigensubspace Projec-tion[J].Remote Sensing, 2022, 14(14):3441-3441 [13]FENG Y, CHEN J, HUANG Z, et al.A Lightweight Position-Enhanced Anchor-Free Algorithm for SAR Ship Detection[J].Remote Sensing, 2022, 14(8):1908-1908 [14]CABREIRA T M, BRISOLARA L B, FERREIRA P R.Survey on Coverage Path Planning with Unmanned Aer-ial Vehicles[J].Drones, 2019, 3(1):4-4 [15]CHEN G, SHEN Y, ZHANG Y, et al.2D multi-area coverage path planning using L-SHADE in simulated ocean survey[J].Applied Soft Computing, 2021, 112(1):107754-107754 [16]薛镇涛, 陈建, 张自超, 等.基于复杂地块凸划分优化的多无人机覆盖路径规划[J]. 航空学报: 1-15.[J].航空学报, 2021, J/OL(J/OL):1-15 [17]XUE Z T, CHEN J, ZHANG Z C, et al.Multi-UAV Coverage Path Planning Based on Optimization of Con-vex Division of Complex Plots[J].Ata Aeronautica et Astronautica Sinica, 2021, J/OL(J/OL):1-15 [18]CABREIRA T M, FRANCO C D, FERREIRA P R, et al.Energy-Aware Spiral Coverage Path Planning for UAV Photogrammetric Applications[J].IEEE Robotics and Automation Letters, 2018, 3(4):3662-3668 [19]夏阳升, 石建迈, 陈超, 等.车机协同多区域覆盖侦察路径规划方法[J].指挥与控制学报, 2020, 6(04):372-380 [20]XIA Y S, SHI J M, CHEN C, et al.Path Planning Method for Multi-Area Reconnaissance by Cooperated Ground Vehicle and Drone[J].Journal of Command and Control, 2020, 6(04):372-380 [21] MARICA V, CURIAC C, QUENTEL P Y M, et al.Stat-ic Coverage Path Planning for UAVs with Conical Field of View When Monitoring Rectangular Ground Are-as[C]. 2019 23rd International Conference on System Theory, Control and Computing (ICSTCC), 2019: 510-514. [22]CHO S W, PARK H J, LEE H, et al.Coverage path planning for multiple unmanned aerial vehicles in mari-time search and rescue operations[J].Computers & Industrial Engineering, 2021, 161(1):107612-107612 [23]YANG C-H, TSAI M-H, KANG S-C, et al.UAV path planning method for digital terrain model reconstruction – A debris fan example[J].Automation in Construction, 2018, 93(93):214-230 [24]陈海, 王新民, 焦裕松, 等.一种凸多边形区域的无人机覆盖航迹规划算法[J].航空学报, 2010, 31(09):1802-1808 [25]CHEN H, WANG X M, JIAO Y S, et al.An Algorithm of Coverage Flight Path Planning for UAVs in Convex Polygon Areas[J].Acta Aeronautica et Astronautica Sinica, 2010, 31(09):1802-1808 [26]王炳乾, 陈超, 王华军, 等.基于等高线构建无人机航线的新型仿地飞行策略[J].测绘通报, 2011, 11(1):104-107 [27]WANG B Q, CHEN C, WANG H J, et al.A New Ground-like Flight Method Based on Contours to Con-struct Drone Routes[J].Bulletin of Surveying and Mapping, 2020, 11(1):104-107 [28]WANG H, ZHANG S, ZHANG X, et al.Near-Optimal 3-D Visual Coverage for Quadrotor Unmanned Aerial Vehicles Under Photogrammetric Constraints[J].IEEE Transactions on Industrial Electronics, 2022, 69(2):1694-1704 [29]陈玥, 李英成, 李兵, 等.复杂地势下轻小型无人机自主航线设计[J].测绘科学, 2021, 46(03):104-109 [30]CHEN Y, LI Y C, LI B, et al.Design of LiDAR Auton-omous Route for Light and Small Drones under Com-plex Terrain[J].Science of Surveying and Mapping, 2021, 46(03):104-109 [31]VO A V, LAEFER D F, BYRNE J.Optimizing Urban LiDAR Flight Path Planning Using a Genetic Algorithm and a Dual Parallel Computing Framework[J].Remote Sensing, 2021, 13(21):4437-4437 [32]LIU N, LI X, PENG X, et al.SAR Tomography Based on Atomic Norm Minimization in Urban Areas[J].Re-mote Sensing, 2022, 14(14):3439-3439 [33]张同同, 杨红磊, 李东明, 等.SAR影像中叠掩与阴影区域的识别——以湖北巴东为例[J].测绘通报, 2019, 11(1):4-4 [34]ZHANG T T, YANG H L, LI D M, et al.Identification of Layover and Shadows Regions in SAR Images: Tak-ing Badong as an Example[J].Bulletin of Surveying and Mapping, 2019, 11(11):4-4 [35]赵争.地形复杂区域高精度提取方法[J].测绘学报, 2016, 45(11):1385-1385 [36]ZHAO Z.Methods on High-Accuracy DEM Extraction from Interferometric SAR in Sophisticated Terrain Areas[J].Acta Geodaetica et Cartographica Sinica, 2016, 45(11):1385-1385 [37]童鹏, 简骁, 赵英俊, 等.基于的山区机载航线设计[J].铁道勘察, 2015, 41(01):24-26 [38]TONG P, JIAN X, ZHAO Y J, et al.Airborne LIDAR Flight Route Design Based on DEM in The Moun-tains[J].Railway Investigation and Surveying, 2015, 41(01):24-26 [39]LI Y, CHEN H, JOO ER M, et al.Coverage path plan-ning for UAVs based on enhanced exact cellular de-composition method[J].Mechatronics, 2011, 21(5):876-885 [40]GUASTELLA D C, CANTELLI L, GIAMMELLO G, et al.Complete coverage path planning for aerial vehi-cle flocks deployed in outdoor environments[J].Com-puters & Electrical Engineering, 2019, 75(1):189-201 [41]戴健, 许菲, 陈琪锋.多无人机协同搜索区域划分与路径规划[J].航空学报, 2020, 41(S1):149-156 [42]DAI J, XU F, CHEN Q F.Multi-UAV Cooperative Search on Region Division and Path Planning[J].Ata Aeronautica et Astronautica Sinica, 2020, 41(S1):149-156
文章导航

/