面向形状控制的传感器和作动器布局综合优化
收稿日期: 2022-08-01
修回日期: 2022-09-14
录用日期: 2022-10-28
网络出版日期: 2022-11-04
基金资助
装备预先研究项目(41423010202)
Integrated optimization of sensor and actuator layout for shape control
Received date: 2022-08-01
Revised date: 2022-09-14
Accepted date: 2022-10-28
Online published: 2022-11-04
Supported by
Equipment Pre-research Project of China(41423010202)
随着诸多智能材料的兴起,可赋予传统结构多样化的功能,并有力推进了各领域对智能结构的研究。围绕智能结构形状控制要点,首先综述了智能结构形状监测常用的3种基于应变的结构变形重构方法:模态法、Ko位移理论法、逆有限元法的基本原理和研究现状,对比分析了这3种重构方法的优缺点之后,确定本文选用逆有限元重构法;其次总结了压电智能结构中作动器控制变形影响因素和优化算法的研究现状;然后将压电智能结构作为载体,以实现结构具有自感知、自驱动能力为目的,结合不同智能算法的利弊与传感器和作动器布局综合研究的实际需求,提出了一种压电传感器和压电作动器布局综合优化策略;最后讨论了压电传感器和作动器布局综合优化研究中存在的难点问题,并展望了压电智能结构在未来的研究发展前景。
李西宁 , 叶园园 , 李卫平 , 王守川 . 面向形状控制的传感器和作动器布局综合优化[J]. 航空学报, 2023 , 44(13) : 227880 -227880 . DOI: 10.7527/S1000-6893.2022.27880
The emergence of a large number of smart materials endows traditional structures with diversified functions, vigorously promoting the research on smart structures in various fields. Focusing on smart structure shape control points, this paper first summarizes three strain based structure deformation reconstruction methods commonly used in intelligent structure shape monitoring: the modal method, the Ko displacement theory, and the inverse finite element method. The basic principles and research status of these methods are introduced, and the inverse finite element method is selected for this study after the advantages and disadvantages of the three methods are compared. Secondly, the research status of influence factors and optimization algorithms of actuator control deformation in piezoelectric intelligent structures is introduced. The piezoelectric intelligent structure is then used as the carrier to realize the self-sensing and self-actuation ability of the structure. Combining the advantages and disadvantages of different intelligent algorithms and the actual needs of comprehensive research on sensors and actuator layouts, we propose a comprehensive optimization strategy for piezoelectric sensors and actuator layouts. Finally, the difficulties in the layout optimization of piezoelectric sensors and actuators are discussed, and the future research and development prospects of piezoelectric intelligent structures are prospected.
1 | 李山青, 刘正兴, 杨耀文. 压电材料在智能结构形状和振动控制中的应用[J]. 力学进展, 1999, 29(1): 66-76. |
LI S Q, LIU Z X, YANG Y W. The applications of piezoelectric materials on shape control and vibration control of smart structures[J]. Advances in Mechanics, 1999, 29(1): 66-76 (in Chinese) . | |
2 | 房芳, 郑辉, 汪玉, 等. 机械结构健康监测综述[J]. 机械工程学报, 2021, 57(16): 269-292. |
FANG F, ZHENG H, WANG Y, et al. Mechanical structural health monitoring: A review[J]. Journal of Mechanical Engineering, 2021, 57(16): 269-292 (in Chinese). | |
3 | 孔袁莉. 压电悬臂梁变形控制研究[D]. 大连: 大连理工大学, 2017. |
KONG Y L. Research on deformation control of piezoelectric cantilever beam[D]. Dalian: Dalian University of Technology, 2017 (in Chinese). | |
4 | 韦君, 颜春, 赵岳, 等. 自诊断复合材料研究进展[J]. 复合材料科学与工程, 2020(9): 111-117. |
WEI J, YAN C, ZHAO Y, et al. Research progress in self-diagnosis composites[J]. Composites Science and Engineering, 2020(9): 111-117 (in Chinese). | |
5 | 张仲, 吕晓仁, 于鹤龙, 等. 智能自修复材料研究进展[J]. 材料导报, 2022, 36(7): 241-248. |
ZHANG Z, LYU X R, YU H L, et al. Research progress of intelligent self-healing materials[J]. Materials Reports, 2022, 36(7): 241-248 (in Chinese). | |
6 | 黄全振, 郭新军, 张洋, 等. 面向结构振动主动控制的压电传感器与作动器优化配置方法[J]. 中国测试, 2020, 46(12): 112-118. |
HUANG Q Z, GUO X J, ZHANG Y, et al. Optimal placement of piezoelectric sensors and actuators for active structural vibration control[J]. China Measurement & Test, 2020, 46(12): 112-118 (in Chinese). | |
7 | 刘鑫, 李新阳, 杜睿. 压电倾斜镜迟滞非线性建模及逆补偿控制[J]. 光电工程, 2020, 47(4): 19-25. |
LIU X, LI X Y, DU R. Modeling and inverse compensation control of hysteresis nonlinear characteristics of piezoelectric steering mirror[J]. Opto-Electronic Engineering, 2020, 47(4): 19-25 (in Chinese). | |
8 | 雷鹰, 刘丽君, 郑翥鹏. 结构健康监测若干方法与技术研究进展综述[J]. 厦门大学学报(自然科学版), 2021, 60(3): 630-640. |
LEI Y, LIU L J, ZHENG Z P. Review on the developments of some methods and techniques in structural health monitoring[J]. Journal of Xiamen University (Natural Science), 2021, 60(3): 630-640 (in Chinese). | |
9 | GHERLONE M, CERRACCHIO P, MATTONE M. Shape sensing methods: Review and experimental comparison on a wing-shaped plate[J]. Progress in Aerospace Sciences, 2018, 99: 14-26. |
10 | ESPOSITO M, GHERLONE M. Composite wing box deformed-shape reconstruction based on measured strains: Optimization and comparison of existing approaches[J]. Aerospace Science and Technology, 2020, 99: 105758. |
11 | FOSS G C, HAUGSE E D. Using modal test results to develop strain to displacement transformations[J]. Proceedings of SPIE—The International Society for Optical Engineering, 1995, 2460: 112. |
12 | PISONI A, SANTOLINI C, HAUF D E. Displacements in a vibrating body by strain gauge measurements[C]∥ Proceedings of the 13th International Modal Analysis Conference. 1995. |
13 | BOGERT P, HAUGSE E, GEHRKI R. Structural shape identification from experimental strains using a modal transformation technique[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003. |
14 | WANG Z C, GENG D, REN W X, et al. Strain modes based dynamic displacement estimation of beam structures with strain sensors[J]. Smart Materials and Structures, 2014, 23(12): 125045. |
15 | 杨坤. 埋植元件的复合材料结构变形监测技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2009. |
YANG K. Research on deformed shape monitoring for composite structures with embedded componets[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese). | |
16 | LI L, ZHONG B S, LI W Q, et al. Structural shape reconstruction of fiber Bragg grating flexible plate based on strain modes using finite element method[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(4): 463-478. |
17 | ZHANG Q, FU X, REN L. Deflection estimation of beam structures based on the measured strain mode shape[J]. Smart Materials and Structures, 2021, 30(10): 105003. |
18 | 欧阳运芳, 何鹏, 刘占生. 基于有限元仿真的航空发动机振动传感器布局优化方法研究[J]. 汽轮机技术, 2018, 60(5): 359-362. |
OUYANG Y F, HE P, LIU Z S. Investigation of the optimization method of the vibration transducer layout of aero engine[J]. Turbine Technology, 2018, 60(5): 359-362 (in Chinese). | |
19 | KO W, RICHARDS W L, FLEISCHER V T. Applications of KO displacement theory to the deformed shape predictions of the doubly-tapered ikhana wing: NASA/TP-2009-214652 [R]. Washington,D.C.:NASA, 2009. |
20 | KO W, FLEISCHER V. Methods for In-flight wing shape predictions of highly flexible unmanned aerial vehicles: formulation of ko displacement theory: NASA/TP-2010 -214656 [R]. Washington,D.C.:NASA, 2010. |
21 | KO W, FLEISCHER V. Further development of ko displacement theory for deformed shape predictions of nonuniform aerospace structures: NASA/TP-2009-214643 [R]. Washington,D.C.:NASA, 2009. |
22 | JUTTE C V, KO W, STEPHENS C A, et al. Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test: NASA/ TP- 2011- 215975 [R]. Washington,D.C.:NASA, 2011. |
23 | DERKEVORKIAN A, MASRI S F, ALVARENGA J, et al. Strain-based deformation shape-estimation algorithm for control and monitoring applications[J]. AIAA Journal, 2013, 51(9): 2231-2240. |
24 | KO W, FLEISCHER V, LUNG S. Curvilinear displacement transfer functions for deformed shape predictions of curved structures using distributed surface strains:NASA/TP- 2018- 219692 [R]. Washington,D.C.:NASA, 2018. |
25 | KO W, FLEISCHER V, LUNG S. Curved displacement transfer functions for geometric nonlinear large deformation structure shape predictions: NASA/ TP- 2017-219406[R]. Washington,D.C.:NASA, 2017. |
26 | 袁慎芳, 闫美佳, 张巾巾, 等. 一种适用于梁式机翼的变形重构方法[J]. 南京航空航天大学学报, 2014, 46(6): 825-830. |
YUAN S F, YAN M J, ZHANG J J, et al. Shape reconstruction method of spar wing structure[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(6): 825-830 (in Chinese). | |
27 | 曲道明, 孙广开, 李红, 等. 变形机翼柔性蒙皮形状光纤传感及重构方法[J]. 仪器仪表学报, 2018, 39(1): 144-151. |
QU D M, SUN G K, LI H, et al. Optical fiber sensing and reconstruction method for morphing wing flexible skin shape[J]. Chinese Journal of Scientific Instrument, 2018, 39(1): 144-151 (in Chinese). | |
28 | 刘鹏. 基于分布式光纤传感技术的空间桁架结构形态监测技术研究[D]. 南京: 南京航空航天大学, 2019. |
LIU P. Research on spatial truss structure morphology monitoring technology based on distributed optical fiber sensing technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
29 | TESSLER A, SPANGLER J L. A variational principle for reconstruction of elastic deformations in shear deformable plates and shells: NASA/TM-2003-212445 [R]. Washington,D.C.:NASA, 2003. |
30 | TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(2-5): 327-339. |
31 | TESSLER A, SPANGLER J L. Inverse FEM for full-field reconstruction of elastic deformations in shear deformable plates and shells: N20040086696 [R]. Washington,D.C.:NASA,2004. |
32 | CERRACCHIO P, GHERLONE M, MATTONE M, et al. Shape sensing of three-dimensional frame structures using the inverse Finite Element Method[C]∥5th European Workshop on Structural Health Monitoring, 2010: 615-620. |
33 | TESSLER A, DI SCIUVA M, GHERLONE M. A consistent refinement of first-order shear deformation theory for laminated composite and sandwich plates using improved zigzag kinematics[J]. Journal of Mechanics of Materials and Structures, 2010, 5(2): 341-367. |
34 | CERRACCHIO P, GHERLONE M, SCIUVA M D, et al. Shape and stress sensing of multilayered composite and sandwich structures using an inverse Finite Element Method[C]∥5th International Conference on Computational Methods for Coupled Problems in Science and Engineering, 2013: 311-322. |
35 | CERRACCHIO P, GHERLONE M, SCIUVA M D, et al. A novel approach for displacement and stress monitoring of sandwich structures based on the inverse Finite Element Method[J]. Composite Structures, 2015, 127: 69-76. |
36 | KEFAL A, TESSLER A, OTERKUS E. An enhanced inverse finite element method for displacement and stress monitoring of multilayered composite and sandwich structures[J]. Composite Structures, 2017, 179: 514-540. |
37 | KEFAL A, YILDIZ M. Modeling of sensor placement strategy for shape sensing and structural health monitoring of a wing-shaped sandwich panel using inverse finite element method[J]. Sensors (Basel, Switzerland), 2017, 17(12): 2775. |
38 | TESSLER A, ROY R, ESPOSITO M, et al. Shape sensing of plate and shell structures undergoing large displacements using the inverse finite element method[J]. Shock and Vibration, 2018, 2018: 1-8. |
39 | 赵勇. 基于逆有限元法的天线副面支撑结构变形重构研究[D]. 西安: 西安电子科技大学, 2019. |
ZHAO Y. Research on reconstructing the supporting structure deformation of sub-reflector based on inverse finite element method[D]. Xi'an: Xidian University, 2019 (in Chinese). | |
40 | ZHAO F F, BAO H, XUE S, et al. Multi-objective particle swarm optimization of sensor distribution scheme with consideration of the accuracy and the robustness for deformation reconstruction[J]. Sensors (Basel, Switzerland), 2019, 19(6): 1306. |
41 | 付书山, 孙广开, 何彦霖, 等. 基于逆有限元的机翼蒙皮变形监测方法仿真研究[J]. 航空制造技术, 2022, 65(6): 107-114. |
FU S S, SUN G K, HE Y L, et al. Simulation study on wing skin deformation monitoring based on inverse finite element method[J]. Aeronautical Manufacturing Technology, 2022, 65(6): 107-114 (in Chinese). | |
42 | 李传兵, 廖昌荣, 张玉璘, 等. 压电智能结构的研究进展[J]. 压电与声光, 2002, 24(1): 42-46, 60. |
LI C B, LIAO C R, ZHANG Y L, et al. Advances of research on piezo-intelligent structures[J]. Piezoelectrics & Acoustooptics, 2002, 24(1): 42-46, 60 (in Chinese). | |
43 | 高仁璟, 张莹, 吴书豪, 等. 面向结构形状控制的驱动器结构参数与控制电压协同优化设计[J]. 光学 精密工程, 2014, 22(6): 1538-1546. |
GAO R J, ZHANG Y, WU S H, et al. Integrated design optimization of actuator structural parameters and control voltages for morphing structural shapes[J]. Optics and Precision Engineering, 2014, 22(6): 1538-1546 (in Chinese). | |
44 | 王晓明. 压电驱动柔性翼面的优化设计与变形控制方法[D]. 大连: 大连理工大学, 2018. |
WANG X M. Optimal design and shape control method for piezo-actuated flexible wing surface[D]. Dalian: Dalian University of Technology, 2018 (in Chinese). | |
45 | 李琳, 薛铮, 范雨. 压电纤维材料驱动下复合板扭曲变形效率分析[J]. 北京航空航天大学学报, 2018, 44(2): 229-240. |
LI L, XUE Z, FAN Y. Efficiency of twist deformation of composite plate actuated by MFC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 229-240 (in Chinese). | |
46 | 李春晖, 孙士勇, 牛斌, 等. MFC驱动的可变形机翼缩比模型主动变形研究[J]. 压电与声光, 2018, 40(1): 104-107. |
LI C H, SUN S Y, NIU B, et al. Study on active deformation of the deformable wing shrinkage ratio model under drive of MFC[J]. Piezoelectrics & Acoustooptics, 2018, 40(1): 104-107 (in Chinese). | |
47 | 魏武雷, 胡和平, 周云, 等. 基于MFC的压电悬臂梁扭转特性分析[J]. 中国科技信息, 2021(7): 19-22. |
WEI W L, HU H P, ZHOU Y, et al. Torsional characteristics analysis of piezoelectric cantilever beam based on MFC[J]. China Science and Technology Information, 2021(7): 19-22 (in Chinese). | |
48 | BENDINE K, WANKHADE R L. Optimal shape control of piezolaminated beams with different boundary condition and loading using genetic algorithm[J]. International Journal of Advanced Structural Engineering, 2017, 9(4): 375-384. |
49 | PRAKASH B, YASIN M Y, KHAN A H, et al. Optimal location and geometry of sensors and actuators for active vibration control of smart composite beams[J]. Australian Journal of Mechanical Engineering, 2022, 20(4): 981-999. |
50 | HER S C, CHEN H Y. Deformation of composite laminates induced by surface bonded and embedded piezoelectric actuators[J]. Materials (Basel, Switzerland), 2020, 13(14): 3201. |
51 | IURLOVA N A, OSHMARIN D A, SEVODINA N V, et al. Modeling the deformation of a plate using piezoelectric elements located on its surface[J]. Journal of Applied Mechanics and Technical Physics, 2020, 61(7): 1238-1249. |
52 | 王祥, 王晓宇, 柴洪友. 面向结构动静态变形控制的作动器综合优化配置研究[J]. 航天器工程, 2022, 31(1): 64-72. |
WANG X, WANG X Y, CHAI H Y. Research on integrated optimal configuration of actuators for structural dynamic and static deformation control[J]. Spacecraft Engineering, 2022, 31(1): 64-72 (in Chinese). | |
53 | 伍科, 张华振, 兰澜, 等. CFRP反射器型面主动控制和作动器位置优化[J]. 航空学报, 2019, 40(7): 222751. |
WU K, ZHANG H Z, LAN L, et al. Shape active control of a CFRP reflector and placement optimization of actuator[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 222751 (in Chinese). | |
54 | 高仁璟, 张莹, 赵剑, 等. 面向结构形状控制的压电纤维复合薄膜驱动器布局方式与控制参数协同优化设计[J]. 机械工程学报, 2016, 52(18): 177-183. |
GAO R J, ZHANG Y, ZHAO J, et al. Integrated design optimization of MFC-layout form and control parameters for morphing structural shapes[J]. Journal of Mechanical Engineering, 2016, 52(18): 177-183 (in Chinese). | |
55 | WANG X, ZHOU W, WU Z, et al. Integrated design of laminated composite structures with piezocomposite actuators for active shape control[J]. Composite Structures, 2019, 215: 166-177. |
56 | ZHOU W Y, WANG X M, QIAN W, et al. Optimization of locations and fiber orientations of piezocomposite actuators on flexible wings for aeroelastic control[J]. Journal of Aerospace Engineering, 2019, 32(5): 4019056. |
57 | ZHANG H W, LENNOX B, ZHANG H W, et al. A float-encoded genetic algorithm technique for integrated optimization of piezoelectric actuator and sensor placement and feedback gains[J]. Smart Materials and Structures, 2000, 9(4): 552-557. |
58 | CHEN G S, BRUNO R J, SALAMA M. Optimal placement of active/passive members in truss structures using simulated annealing[J]. AIAA Journal, 1991, 29(8): 1327-1334. |
59 | 缑新科, 崔明月. 遗传模拟退火算法在传感器/作动器位置优化问题中的应用[J]. 机械与电子, 2008, 26(11): 39-41. |
GOU X K, CUI M Y. Application of genetic and simulated annealing algorithms in placement optimization of sensor/actuator[J]. Machinery & Electronics, 2008, 26(11): 39-41 (in Chinese). | |
60 | 潘继, 蔡国平. 桁架结构作动器优化配置的粒子群算法[J]. 工程力学, 2009, 26(12): 35-39. |
PAN J, CAI G P. Particle swarm optimizer for optimal locations of actuators of a trussed structure[J]. Engineering Mechanics, 2009, 26(12): 35-39 (in Chinese). | |
61 | MARINAKI M, MARINAKIS Y, STAVROULAKIS G E. Fuzzy control optimized by PSO for vibration suppression of beams[J]. Control Engineering Practice, 2010, 18(6): 618-629. |
62 | 刘洋, 汪尧进. 柔性压电材料及器件应用[J]. 硅酸盐学报, 2022, 50(3): 625-641. |
LIU Y, WANG Y J. Flexible piezoelectric materials and device application[J]. Journal of the Chinese Ceramic Society, 2022, 50(3): 625-641 (in Chinese). |
/
〈 |
|
〉 |