电子电气工程与控制

太阳能无人机线性自抗扰多环路能源控制

  • 邵嘉琪 ,
  • 张晓辉 ,
  • 席涵宇 ,
  • 刘子荣
展开
  • 北京理工大学 宇航学院,北京  100081
.E-mail: shelhuei@bit.edu.cn

收稿日期: 2022-07-14

  修回日期: 2022-08-01

  录用日期: 2022-09-30

  网络出版日期: 2022-10-14

基金资助

航空科学基金(2020Z005072001)

Multi⁃loop energy control method of linear active disturbance rejection for solar⁃powered UAVs

  • Jiaqi SHAO ,
  • Xiaohui ZHANG ,
  • Hanyu XI ,
  • Zirong LIU
Expand
  • School of Aerospace Engineering,Beijing Institute of Technology,Beijing  100081,China

Received date: 2022-07-14

  Revised date: 2022-08-01

  Accepted date: 2022-09-30

  Online published: 2022-10-14

Supported by

Aeronautical Science Foundation of China(2020Z005072001)

摘要

针对太阳能无人机的太阳能/锂电池混合能源系统高能效管理与控制问题,提出了一种基于线性自抗扰控制(LADRC)的多环路控制方法,动态控制能源系统电压/电流,实现太阳能高效利用的同时,避免锂电池过度充电。其核心思想是采用LADRC方法主动消除系统扰动,提高控制器鲁棒性和稳定性,快速稳定响应太阳能无人机机动过程辐照和载荷动态变化;设计最大功率点跟踪(MPPT)环路、稳压环路和限流环路联合控制方法,实现能源管理控制器多个状态量同时控制;通过引入竞争机制,解决控制器工作模式频繁跳变问题。首先,建立了用于MPPT环路控制的LADRC控制器模型,与PI方法进行了动态响应对比测试。然后,搭建了太阳能机翼所受辐照与飞行姿态耦合的太阳能/锂电池混合能源控制试验平台,对所提出的多环路控制方法进行八边形航线飞行模拟测试。最后,试验结果表明:相比于PI方法,基于LADRC方法的多环路控制系统的最大功率点跟踪时间可减少40%~70%,且控制系统更加稳定,瞬态响应加快;在飞行模拟测试过程中,所提多环路控制方法能够根据飞行载荷和电池电量状态平滑切换控制器工作模式,使光伏系统始终以最佳能效输出,研究结果可以为太阳能无人机的高能效飞行提供一种理论基础和工程技术支持。

本文引用格式

邵嘉琪 , 张晓辉 , 席涵宇 , 刘子荣 . 太阳能无人机线性自抗扰多环路能源控制[J]. 航空学报, 2023 , 44(10) : 327812 -327812 . DOI: 10.7527/S1000-6893.2022.27812

Abstract

To achieve high-efficiency management and control of solar cell/lithium battery hybrid energy systems for solar-powered UAVs, we propose a multi-loop control method based on Linear Active Disturbance Rejection Control (LADRC) to dynamically control the voltage/current of the power system, realizing efficient use of solar energy and avoiding overcharging of lithium batteries. The LADRC method is used to actively eliminate the system disturbance, improve the robustness and stability of the controller, and quickly and stably respond to the external dynamic changes during the maneuvering process of the solar UAV. A joint control method combining Maximum Power Point Tracking (MPPT) loop, voltage regulation loop and current limiting loop is designed to realize the simultaneous control of multiple state quantities of the energy management controller. A competition mechanism is introduced to settle the frequent working mode switching of the controller. The LADRC controller mathematical model is first established for the MPPT loop, and the dynamic response is compared with the PID method. A solar cell/lithium battery hybrid energy test platform is then built to couple the irradiation of the solar wing with the flight attitude, and the octagonal flight simulation test conducted for the proposed multi-loop control method. The results show that the maximum power point tracking time of the single/multi-loop control system based on the LADRC method can be reduced by 40%-70%, and the control system is more stable with accelerated transient response. During the flight simulation test, the proposed multi-loop control method can smoothly switch the working mode of the controller according to the flight load and battery power state, so that the photovoltaic system can always output with the best energy efficiency. The research results can provide a theoretical basis and engineering technical support for the high-efficiency flight of solar-powered UAVs.

参考文献

1 闫清云, 刘峰, 王卓煜. 太阳能无人机发展综述[J]. 飞机设计202141(2): 1-5, 12.
  YAN Q Y, LIU F, WANG Z Y. Overview of solar powered UAV development[J]. Aircraft Design202141(2): 1-5, 12 (in Chinese).
2 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报202041(3): 623418.
  MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica202041(3): 623418 (in Chinese).
3 TOWNSEND A, JIYA I N, MARTINSON C, et al. A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements[J]. Heliyon20206(11): e05285.
4 刘莉, 曹潇, 张晓辉, 等. 轻小型太阳能/氢能无人机发展综述[J]. 航空学报202041(3): 623474.
  LIU L, CAO X, ZHANG X H, et al. Review of development of light and small scale solar/hydrogen powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica202041(3): 623474 (in Chinese).
5 BARTON J P, INFIELD D G. Energy storage and its use with intermittent renewable energy[J]. IEEE Transactions on Energy Conversion200419(2): 441-448.
6 BOUKOBERINE M N, ZHOU Z B, BENBOUZID M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects[J]. Applied Energy2019255: 113823.
7 ZHANG Z J, JI R T, WANG Y, et al. An improved energy management strategy for the solar powered unmanned aerial vehicle at the extreme condition[J]. Journal of Energy Storage202143: 103114.
8 朱立宏, 孙国瑞, 呼文韬, 等. 太阳能无人机能源系统的关键技术与发展趋势[J]. 航空学报202041(3): 623503.
  ZHU L H, SUN G R, HU W T, et al. Key technology and development trend of energy system in solar powered unmanned aerial vehicles[J]. Acta Aeronautica et Astronautica Sinica202041(3): 623503 (in Chinese).
9 LIU F R, KANG Y, ZHANG Y, et al. Comparison of P&O and hill climbing MPPT methods for grid-connected PV converter[C]∥ 2008 3rd IEEE Conference on Industrial Electronics and Applications. Piscataway: IEEE Press, 2008: 804-807.
10 TAFTICHT T, AGBOSSOU K. Development of a MPPT method for photovoltaic systems[C]∥ Canadian Conference on Electrical and Computer Engineering 2004 (IEEECat. No.04CH37513). Piscataway: IEEE Press, 2004: 1123-1126.
11 SALAS V, OLíAS E, BARRADO A, et al. Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems[J]. Solar Energy Materials and Solar Cells200690(11): 1555-1578.
12 KARATEPE E, SYAFARUDDIN, HIYAMA T. Simple and high-efficiency photovoltaic system under non-uniform operating conditions[J]. IET Renewable Power Generation20104(4): 354-368.
13 DESAI H P, PATEL H K. Maximum power point algorithm in PV generation: an overview[C]∥ 2007 7th International Conference on Power Electronics and Drive Systems. Piscataway: IEEE Press, 2008: 624-630.
14 TAREK B, SAID D, BENBOUZID M E H. Maximum power point tracking control for photovoltaic system using adaptive neuro- fuzzy “ANFIS”[C]∥ 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER). Piscataway: IEEE Press, 2013: 1-7.
15 PAVITHRA C, SINGH P, SUNDRAMURTHY V P, et al. WITHDRAWN: A brief overview of maximum power point tracking algorithm for solar PV system[C]∥Materials Today: Proceedings, 2021.
16 张江浩. 太阳能无人机光伏发电系统MPPT控制方法研究[D]. 北京: 北京理工大学, 2021.
  ZHANG J H. Research on MPPT control method of solar unmanned aerial vehicle photovoltaic power generation system[D]. Beijing: Beijing Institute of Technology, 2021 (in Chinese).
17 向乾, 张晓辉, 王正平, 等. 适用无人机的小型燃料电池控制方法[J]. 航空学报202142(3): 623960.
  XIANG Q, ZHANG X H, WANG Z P, et al. Control method of small fuel cells for UAVs[J]. Acta Aeronautica et Astronautica Sinica202142(3): 623960 (in Chinese).
18 廖自力, 赵其进, 刘春光. 基于自抗扰技术的PMSM无位置传感器优化控制[J]. 微电机201851(7): 44-47, 53.
  LIAO Z L, ZHAO Q J, LIU C G. Sensorless optimal control for PMSM based on active disturbance rejection control[J]. Micromotors201851(7): 44-47, 53 (in Chinese).
19 HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics200956(3): 900-906.
20 ISLAM M S, ROY S, MONDAL A, et al. Single phase grid connected inverter controls using three-pole three-zero compensator[C]∥ 2021 IEEE 12th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). Piscataway: IEEE Press, 2021: 1-8.
21 AVILA E, JARAMILLO A, COSTA J, et al. Energy management of a solar-battery powered fixed-wing UAV[C]∥ 2018 International Conference on Information Systems and Computer Science (INCISCOS). Piscataway: IEEE Press, 2018: 180-185.
22 邵阳, 武建文, 陈明轩, 等. 空间太阳能发电站拓扑架构及能量管理控制策略[J]. 宇航学报202041(9): 1228-1238.
  SHAO Y, WU J W, CHEN M X, et al. Topology architecture and energy management control strategy of space solar power station[J]. Journal of Astronautics202041(9): 1228-1238 (in Chinese).
23 MAHMOOD H, MICHAELSON D, JIANG J. Control strategy for a standalone PV/battery hybrid system[C]∥ IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2012: 3412-3418.
24 张晓辉. 燃料电池混合动力无人机能源管理研究[D]. 北京: 北京理工大学, 2018.
  ZHANG X H. Research on energy management of fuel cell hybrid UAVs[D]. Beijing: Beijing Institute of Technology, 2018 (in Chinese).
25 韩京清. 从PID技术到“自抗扰控制”技术[J]. 控制工程20029(3): 13-18.
  HAN J Q. From PID technique to active disturbances rejection control technique[J]. Basic Automation20029(3): 13-18 (in Chinese).
26 GUO B Z, ZHAO Z L. The active disturbance rejection control[M]∥Active disturbance rejection control for nonlinear systems. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2016: 155-290.
27 MANIKTALA S. 精通开关电源[M]. 2版. 王建强等, 译.北京: 人民邮电出版社, 2015.
  MANIKTALA S. Switching power supplies A-E, 2E[M]. 2nd ed. WANG J Q, et al, translated. Beijing: Posts & Telecom Press, 2015 (in Chinese).
28 GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]∥ Proceedings of the 2003 American Control Conference. Piscataway: IEEE Press, 2003: 4989-4996.
29 JOSHI P, ARORA S. Maximum power point tracking methodologies for solar PV systems–A review[J]. Renewable and Sustainable Energy Reviews201770: 1154-1177.
30 廖志凌, 阮新波. 任意光强和温度下的硅太阳电池非线性工程简化数学模型[J]. 太阳能学报200930(4): 430-435.
  LIAO Z L, RUAN X B. Non-linear engineering simplification model of silicon solar cells in arbitrary solar radiation and temperature[J]. Acta Energiae Solaris Sinica200930(4): 430-435 (in Chinese).
文章导航

/