电子电气工程与控制

参数不确定性下高效的可靠性灵敏度分析方法

  • 陈志远 ,
  • 李璐祎
展开
  • 西北工业大学 航空学院,西安 710072

收稿日期: 2021-05-28

  修回日期: 2021-06-30

  网络出版日期: 2022-09-30

基金资助

国家自然科学基金(51875464);中央高校基本科研业务费人才培育类项目

Efficient methods for reliability sensitivity analysis of inputs with distribution parameter uncertainty

  • CHEN Zhiyuan ,
  • LI Luyi
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China

Received date: 2021-05-28

  Revised date: 2021-06-30

  Online published: 2022-09-30

Supported by

国家自然科学基金(51875464);中央高校基本科研业务费人才培育类项目

摘要

对于输入变量分布参数具有不确定性的结构系统,分布参数的不确定性会导致结构失效概率的不确定性,进而输入变量对失效概率的贡献也是不确定的。在这种情况下,传统的抽样方法需要三层嵌套循环的可靠性分析以评估输入变量对结构失效的影响,计算量过大,难以适用于工程实际问题。因此,提出了一种参数不确定性下输入变量可靠性灵敏度分析的高效算法,所提方法通过引入"代理抽样概率密度函数(SS-PDF)",并结合单层Monte Carlo(MC)方法,将传统的三层嵌套可靠性分析转化为单层分析过程,大大减少了计算量。并针对小失效概率问题,将重要抽样法(IS)和截断重要抽样法(TIS)与这种单层抽样法相结合,进一步提高计算效率。算例结果验证了所提方法的效率和精度。

本文引用格式

陈志远 , 李璐祎 . 参数不确定性下高效的可靠性灵敏度分析方法[J]. 航空学报, 2022 , 43(9) : 325881 -325881 . DOI: 10.7527/S1000-6893.2021.25881

Abstract

For structural systems involving inputs with distribution parameter uncertainty, the uncertainty in distribution parameters will lead to the uncertainty of failure probability. Consequently, the contributions of the input variables to failure probability are also uncertain. In this case, the three-loop nested Monte Carlo(MC) sampling strategy is considered a natural method to evaluate the influence of input variables on the structural failure., However, the computational cost of the MC method is normally too prohibitive to be accepted for the engineering problem. Therefore, a newly efficient algorithm is proposed in this paper for global reliability sensitivity analysis of the inputs with parameter uncertainty. The proposed method can reduce the three-loop nested MC into a single-loop one by introducing a 'Surrogate Sampling Probability Density Function (SS-PDF)’ and incorporating the single-loop MC theory into the computation, which greatly decreases the computational cost. For the problem with small failure probability, the importance Sampling Procedure (IS) and Truncated Importance Sampling procedure (TIS) are combined with the single-loop sampling method to further improve the calculation efficiency. The efficiency and precision of the proposed methods are verified by several numerical and engineering examples.

参考文献

[1] ZHOU S T, LYU Z Z, LING C Y, et al. Meta-IS-AK algorithm for estimating global reliability sensitivity[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 223088 (in Chinese). 周苏婷, 吕震宙, 凌春燕, 等. 可靠性全局灵敏度求解的Meta-IS-AK算法[J]. 航空学报, 2020, 41(1): 223088.
[2] ZHAO X, LI H S. Global reliability sensitivity analysis using cross entropy method and space partition[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 221570 (in Chinese). 赵翔, 李洪双. 基于交叉熵和空间分割的全局可靠性灵敏度分析[J]. 航空学报, 2018, 39(2): 221570.
[3] HELTON J C, JOHNSON J D, SALLABERRY C J, et al. Survey of sampling-based methods for uncertainty and sensitivity analysis[J]. Reliability Engineering & System Safety, 2006, 91(10-11): 1175-1209.
[4] EHRE M, PAPAIOANNOU I, STRAUB D. A framework for global reliability sensitivity analysis in the presence of multi-uncertainty[J]. Reliability Engineering & System Safety, 2020, 195: 106726.
[5] LIU F C, WEI P F, ZHOU C C, et al. Time-dependent reliability and sensitivity analysis for planar motion mechanisms with revolution joint clearances[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11): 422141 (in Chinese). 刘付超, 魏鹏飞, 周长聪, 等. 含旋转铰间隙平面运动机构可靠性灵敏度分析[J]. 航空学报, 2018, 39(11): 422141.
[6] SHI Z Y, LYU Z Z, LI L Y, et al. Cross-entropy importance sampling method based on adaptive Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 223123 (in Chinese). 史朝印, 吕震宙, 李璐祎, 等. 基于自适应Kriging代理模型的交叉熵重要抽样法[J]. 航空学报, 2020, 41(1): 223123.
[7] CUI L J, LV Z, ZHAO X P. Moment-independent importance measure of basic random variable and its probability density evolution solution[J]. Science China Technological Sciences, 2010, 53(4): 1138-1145.
[8] ZHANG H M, GU X H, DI Y. Reliability analysis method based on Tree Markov Chain model[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 222643 (in Chinese). 张洪铭, 顾晓辉, 邸忆. 基于树形马氏链模型的可靠性分析方法[J]. 航空学报, 2019, 40(5): 222643.
[9] LYU Z Z, LI L Y, SONG S F. Importance analysis theory and solution method of uncertain structural system[M]. Beijing: Science Press, 2015: 9-26 (in Chinese). 吕震宙, 李璐祎, 宋述芳. 不确定性结构系统的重要性分析理论与求解方法[M]. 北京: 科学出版社, 2015: 9-26.
[10] CUKIER R I, FORTUIN C M, SHULER K E, et al. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[J]. The Journal of Chemical Physics, 1973, 59(8): 3873-3878.
[11] HELTON J C, DAVIS F J. Sampling-based methods[M]. In: Saltelli A, Chan K, Scott E M, editors. Sensitivity analysis. New York: Wiley, 2000: 101-153.
[12] HELTON J C, DAVIS F J. Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J]. Reliability Engineering & System Safety, 2003, 81(1): 23-69.
[13] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation, 2001, 55(1-3): 271-280.
[14] SOBOL I M, KUCHERENKO S. Derivative based global sensitivity measures and their link with global sensitivity indices[J]. Mathematics and Computers in Simulation, 2009, 79(10): 3009-3017.
[15] SALTELLI A, MARIVOET J. Non-parametric statistics in sensitivity analysis for model output: A comparison of selected techniques[J]. Reliability Engineering & System Safety, 1990, 28(2): 229-253.
[16] SALTELLI A. Sensitivity analysis for importance assessment[J]. Risk Analysis, 2002, 22(3): 579-590.
[17] SALTELLI A. Making best use of model evaluations to compute sensitivity indices[J]. Computer Physics Communications, 2002, 145(2): 280-297.
[18] LI G Y, HU J S, WANG S W, et al. Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions[J]. The Journal of Physical Chemistry A, 2006, 110(7): 2474-2485.
[19] RATTO M, PAGANO A, YOUNG P. State Dependent Parameter metamodelling and sensitivity analysis[J]. Computer Physics Communications, 2007, 177(11): 863-876.
[20] TARANTOLA S, GATELLI D, MARA T A. Random balance designs for the estimation of first order global sensitivity indices[J]. Reliability Engineering & System Safety, 2006, 91(6): 717-727.
[21] SHEPHERD B E. Global sensitivity analysis. the primer by Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S[J]. Biometrics, 2009, 65(4): 1311-1312.
[22] BORGONOVO E. A new uncertainty importance measure[J]. Reliability Engineering & System Safety, 2007, 92(6): 771-784.
[23] BORGONOVO E, CASTAINGS W, TARANTOLA S. Moment independent importance measures: New results and analytical test cases[J]. Risk Analysis, 2011, 31(3): 404-428.
[24] LI L Y, LU Z Z, CHEN C. Moment-independent importance measure of correlated input variable and its state dependent parameter solution[J]. Aerospace Science and Technology, 2016, 48: 281-290.
[25] WEI P F, LU Z Z, HAO W R, et al. Efficient sampling methods for global reliability sensitivity analysis[J]. Computer Physics Communications, 2012, 183(8): 1728-1743.
[26] YUN W Y, LU Z Z, JIANG X, et al. An efficient method for estimating global sensitivity indices[J]. International Journal for Numerical Methods in Engineering, 2016, 108(11): 1275-1289.
[27] YUN W Y, LU Z Z, JIANG X. An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy[J]. Reliability Engineering & System Safety, 2019, 187: 174-182.
[28] JIANG X, WANG Y, MENG M. Efficient algorithm for analyzing moment-independent global reliability sensitivity[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 222414 (in Chinese). 蒋献, 王言, 孟敏. 失效概率矩独立全局灵敏度分析的高效算法[J]. 航空学报, 2019, 40(3): 222414.
[29] SHI Y, LU Z Z, CHENG K, et al. Temporal and spatial multi-parameter dynamic reliability and global reliability sensitivity analysis based on the extreme value moments[J]. Structural and Multidisciplinary Optimization, 2017, 56(1): 117-129.
[30] XU X B, LI S B, SONG X J, et al. The optimal design of industrial alarm systems based on evidence theory[J]. Control Engineering Practice, 2016, 46: 142-156.
[31] YUN W Y, LU Z Z, HE P F, et al. An efficient method for estimating the parameter global reliability sensitivity analysis by innovative single-loop process and embedded Kriging model[J]. Mechanical Systems and Signal Processing, 2019, 133: 106288.
[32] LING C Y, LU Z Z, CHENG K, et al. An efficient method for estimating global reliability sensitivity indices[J]. Probabilistic Engineering Mechanics, 2019, 56: 35-49.
[33] WANG Z Q, JIA G F. Augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters[J]. Reliability Engineering & System Safety, 2020, 197: 106783.
[34] DITLEVSEN O, MADSEN H. Structural reliability methods[M]. New York: Wiley, 1996: 960.
[35] HALDAR A, MAHADEVAN S. Probability, reliability and statistical methods in engineering design (haldar, mahadevan)[J]. Bautechnik, 2000, 77(5): 379-379.
[36] HAJAGOS J G. Interval Monte Carlo as an alternative to second-order sampling for estimating ecological risk[J]. Reliable Computing, 2007, 13(1): 71-81.
[37] JIANG C, ZHENG J, HAN X. Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties: A review[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2485-2502.
[38] CREMONA C, GAO Y. The possibilistic reliability theory: Theoretical aspects and applications[J]. Structural Safety, 1997, 19(2): 173-201.
[39] CHO H, CHOI K K, GAUL N J, et al. Conservative reliability-based design optimization method with insufficient input data[J]. Structural and Multidisciplinary Optimization, 2016, 54(6): 1609-1630.
[40] LI L Y, LU Z Z. A new algorithm for importance analysis of the inputs with distribution parameter uncertainty[J]. International Journal of Systems Science, 2016, 47(13): 3065-3077.
[41] TANG Z C, ZUO M J, XIA Y J. Effect of truncated input parameter distribution on the integrity of safety instrumented systems under epistemic uncertainty[J]. IEEE Transactions on Reliability, 2017, 66(3): 735-750.
[42] CHABRIDON V, BALESDENT M, BOURINET J M, et al. Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty[J]. Reliability Engineering & System Safety, 2018, 178: 164-178.
[43] LYU Z Z, SONG S F, LI L Y. Reliability design basis of structural mechanism[M]. Xi’an: Northwestern Polytechnical University Press, 2019: 67-106 (in Chinese). 吕震宙, 宋述芳, 李璐祎. 结构/机构可靠性设计基础[M]. 西安: 西北工业大学出版社, 2019: 67-106.
文章导航

/