主动引射气体参数对平板空气舵气动热影响

  • 聂春生 ,
  • 袁野 ,
  • 马伟 ,
  • 曹占伟 ,
  • 于明星
展开
  • 中国运载火箭技术研究院 空间物理重点试验室,北京 100076
.E-mail: ymxchyh@sohu.com

收稿日期: 2022-06-30

  修回日期: 2022-07-28

  录用日期: 2022-08-24

  网络出版日期: 2022-09-13

Effect of active ejection gas parameters on thermal environment of plate and air rudder

  • Chunsheng NIE ,
  • Ye YUAN ,
  • Wei MA ,
  • Zhanwei CAO ,
  • Mingxing YU
Expand
  • Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China
E-mail: ymxchyh@sohu.com

Received date: 2022-06-30

  Revised date: 2022-07-28

  Accepted date: 2022-08-24

  Online published: 2022-09-13

摘要

针对平板空气舵模型,在激波风洞马赫数为10、单位雷诺数为2.1×106/m的来流条件下,采用纹影和热流传感器进行了主动引射气体对高超声速流场调控和降热规律的试验研究。获得了不同马赫数和压力的主动引射气体条件下,流场的激波结构和模型表面热流通量。试验数据表明:在空气舵上游通过主动引射气体进行流场调控,能够降低平板和空气舵的干扰加热;引射气体马赫数为2时,降热效果达到45%,引射气体马赫数为4时,降热效果达到70%以上;随着引射气体马赫数和压力的增大,引射喷口下方的平板、舵尖、舵面和舵轴的降热效果越好,热流降低幅值和区域均会增大;可以通过提高引射气体的压力,在较低的引射气体马赫数下达到与高马赫数引射气体相同的流场控制效果;主动引射气体对边界层流态和厚度的改变是决定平板空气舵降热效果的主控因素;高超声速流场中,较低马赫数的引射气体就能够改变下游的流态,但只有较高马赫数或较高压力的引射气体,才能对下游产生较好的降热效果;从气体流量需求的角度出发,建议采用“高马赫数、低压力”的引射出口参数进行引射系统设计。

本文引用格式

聂春生 , 袁野 , 马伟 , 曹占伟 , 于明星 . 主动引射气体参数对平板空气舵气动热影响[J]. 航空学报, 2022 , 43(S2) : 170 -179 . DOI: 10.7527/S1000-6893.2022.27736

Abstract

For the flat plate air rudder model, under the conditions of Mach number of 10 and unit Reynolds number of 2.1×106/m in the shock wind tunnel, the regulation of hypersonic flow field and the law of heat flux reduction by actively ejecting gas were experimentally studied using schlieren and heat flux sensors. The shock wave structure of the flow field and the heat flux on the model surface were obtained under the conditions of actively ejecting gas at different Mach numbers and pressures. The experimental data show that the interference heat flux of the flat plate and the air rudder can be reduced by actively ejecting the air flow field upstream of the air rudder; when the Mach number of the ejected gas is 2, the heat flux reduction effect reaches 45%, and when the Mach number of the ejected gas is 4, the heat flux reduction effect reaches more than 70%; with the increase of the Mach number and pressure of the ejected gas, the better the heat flux reduction effect of the flat plate, rudder tip, rudder surface and rudder shaft below the ejected nozzle is, and the amplitude and area of the heat flux reduction will increase; by increasing the pressure of the ejected gas, the flow field control effect of the ejected gas at low Mach number is the same as that of the ejected gas at high Mach number; the change of the boundary layer flow pattern and thickness caused by the active injection of gas is the main control factor to determine the heat flux reduction effect of the flat air rudder; in the hypersonic flow field, the ejected gas at a lower Mach number can change the flow pattern downstream, but only the ejected gas at a higher Mach number or pressure can produce a better heat flux reduction effect downstream; from the point of view of gas flow demand, it is suggested to adopt the ejector outlet parameters of “high Mach number, low pressure” for the design of the ejector system.

参考文献

1 李素循. 激波与边界层主导的复杂流动[M]. 北京: 科学出版社, 2007: 10-24.
  LI S X. Complex flow dominated by shock wave and boundary layer[M]. Beijing: Science Press, 2007: 10-24 (in Chinese).
2 李芳勇, 杨春信, 张兴娟. 高超声速飞行器舵轴热控方案设计[J]. 战术导弹技术, 2018(4): 6-12.
  LI F Y, YANG C X, ZHANG X J. Thermal control design on a shaft in the hypersonic vehicle[J]. Tactical Missile Technology, 2018(4): 6-12 (in Chinese).
3 吴宁宁, 康宏琳, 罗金玲. 高速飞行器翼舵缝隙激波风洞精细测热试验研究[J]. 空气动力学学报, 2019, 37(1): 133-139.
  WU N N, KANG H L, LUO J L. Experimental study on fine thermal measurement of high-speed aircraft wing rudder gapin shock wave tunnel[J]. Acta Aerodynamica Sinica, 2019, 37(1): 133-139 (in Chinese).
4 中国人民解放军总装备部军事训练教材编辑工作委员会. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003: 100-150.
  Editorial Committe of Military Training Textbooks of the General Equipment Department of the Chinese People's Liberation Army. Hypersonic aerothermodynamic and thermal protection[M]. Beijing: National Defense Industry Press, 2003: 100-150 (in Chinese).
5 李艳丽, 李素循. 高超声速绕钝舵层流干扰流场特性研究[J]. 宇航学报, 2007, 28(6): 1472-1477.
  LI Y L, LI S X. Investigation of interactive hypersonic laminar flow over blunt fin[J]. Journal of Astronautics, 2007, 28(6): 1472-1477 (in Chinese).
6 熊宴斌. 超声速主流条件发汗冷却的流动和传热机理研究[D]. 北京: 清华大学, 2013: 9-20.
  XIONG Y B. Study of the mechanism of flow and heat transfer on supersonic transpiration cooling[D]. Beijing: Tsinghua University, 2013: 9-20 (in Chinese).
7 时骏祥. 发散冷却基础问题的理论研究[D]. 合肥: 中国科学技术大学, 2009: 10-25.
  SHI J X. Theoretic investigation on basic problems of transpiration cooling[D]. Hefei: University of Science and Technology of China, 2009: 10-25 (in Chinese).
8 雷云涛, 林智荣, 袁新. 不同吹风比下平板气膜冷却数值模拟[J]. 清华大学学报(自然科学版), 2008, 48(8): 1331-1334.
  LEI Y T, LIN Z R, YUAN X. Numerical study of film cooling of a flat plate at different blowing ratios[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(8): 1331-1334 (in Chinese).
9 丁浩林, 易仕和, 赵鑫海, 等. 带超声速气膜高超声速光学头罩气动光学效应抑制试验[J]. 气体物理, 2018, 3(6): 26-34.
  DING H L, YI S H, ZHAO X H, et al. Experimental investigation on aero-optics imitation of hypersonic optical dome with supersonic film[J]. Physics of Gases, 2018, 3(6): 26-34 (in Chinese).
10 韩启祥, 何小明, 谈浩元,等. 超音速射流气膜冷却效果的试验研究[J]. 南京航空航天大学学报, 1998, 30(5): 491-495.
  HAN Q X, HE X M, TAN H Y, et al. Experimental study on film cooling with supersonic injection[J]. Journal of Nanjing University of Aeronautics & Astronautics, 1998, 30(5): 491-495 (in Chinese).
11 付佳. 瞬态热流测试技术及超声速气膜冷却的试验研究[D]. 长沙: 国防科学技术大学, 2012.
  FU J. Experimental study on transient heat flux measurement and supersonic film cooling[D]. Changsha: National University of Defense Technology, 2012 (in Chinese).
12 袁野, 曹占伟, 马伟, 等. 主动引射冷却对空气舵热环境影响的试验研究[J]. 导弹与航天运载技术, 2021(6): 48-51.
  YUAN Y, CAO Z W, MA W, et al. Experimental research on the influence of the active ejection cooling on the thermal environment of the air rudder[J]. Missiles and Space Vehicles, 2021(6): 48-51 (in Chinese).
13 谭杰, 孙晓峰, 刘芙群, 等. 高超声速平板/空气舵热环境数值模拟研究[J]. 空气动力学学报, 2019, 37(1): 153-159.
  TAN J, SUN X F, LIU F Q, et al. Numerical simulation of aerodynamic heating environment of a hypersonic plate/rudder configuration[J]. Acta Aerodynamica Sinica, 2019, 37(1): 153-159 (in Chinese).
14 陈星, 宫建, 师军, 等. 尖前缘驻点热流测量试验研究[C]?∥第十五届全国激波与激波管学术会议论文集(下册). 北京: 中国学术期刊电子出版社, 2012: 127-133.
  CHEN X, GONG J, SHI J, et al. Experimental study of stagnation-point heat transfer measurement on sharp leading edges[C]?∥Proceedings of the 15th Chinese National Symposium on Shock Waves(Volume 2). Beijing: China Academic Journal Electronic Publishing House, 2012: 127-133 (in Chinese).
15 易仕和, 赵玉新, 何霖. 超声速与高超声速喷管设计[M]. 北京: 国防工业出版社, 2013: 60-150.
  YI S H, ZHAO Y X, HE L. Supersonic and hypersonic nozzle design[M]. Beijing: National Defense Industry Press, 2013: 60-150 (in Chinese).
16 曾磊, 石友安, 孔荣宗, 等. 薄膜电阻温度计原理性误差分析及数据处理方法研究[J]. 实验流体力学, 2011, 25(1): 79-83.
  ZENG L, SHI Y A, KONG R Z, et al. Study on principle error analysis and data processing method of thin film resistance thermometer[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(1): 79-83 (in Chinese).
17 LI Q, NIE L, ZHANG K L, et al. Experimental investigation on aero-heating of rudder shaft within laminar/turbulent hypersonic boundary layers[J]. Chinese Journal of Aeronautics, 2019, 32(5): 1215-1221.
文章导航

/