高超声速飞行器碳基结构高温应变测量

  • 吴东 ,
  • 杨鸿 ,
  • 赵文峰 ,
  • 罗跃
展开
  • 中国空气动力研究与发展中心 超高速空气动力研究所,绵阳 621000
.E-mail: yanghong@cardc.cn

收稿日期: 2022-06-30

  修回日期: 2022-07-27

  录用日期: 2022-08-27

  网络出版日期: 2022-09-13

基金资助

国家级项目

High temperature strain measurement of hypersonic aircraft carbon-based composite material structures

  • Dong WU ,
  • Hong YANG ,
  • Wenfeng ZHAO ,
  • Yue LUO
Expand
  • Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang  621000,China
E-mail: yanghong@cardc.cn

Received date: 2022-06-30

  Revised date: 2022-07-27

  Accepted date: 2022-08-27

  Online published: 2022-09-13

Supported by

National Level Project

摘要

高超声速飞行器结构热应力影响巨大,同时高超声速飞行器高温结构使用碳基材料较多,在碳基材料结构上开展高温应变测量分析就变得非常重要。针对碳基材料上应变计的可靠安装和应变计的热特性差异,开展了碳基材料上高温应变测量研究和碳基端头模型高温应变测量应用试验。碳基材料上高温应变测量研究针对粘贴和喷涂等4种不同安装工艺开展了研究,并针对高温流场环境开展了碳基平板高温应变测量验证试验,应变测量最高温度达900 ℃。应用试验在电弧风洞模拟的高温流场中对碳基端头模型进行了高温应变测量,应变测量温度最高为850 ℃,并开展了有限元计算结果对比,验证了高温应变测量结果。碳基端头模型内腔最大压应力值为220 MPa,应变测量结果显示端头模型的应力状态正常。

本文引用格式

吴东 , 杨鸿 , 赵文峰 , 罗跃 . 高超声速飞行器碳基结构高温应变测量[J]. 航空学报, 2022 , 43(S2) : 160 -169 . DOI: 10.7527/S1000-6893.2022.27733

Abstract

The hypersonic aircraft structures are affected greatly by thermal stress. The carbon-based composite material is widely used in the high temperature structures of the hypersonic vehicles. Therefore, it is necessary to measure and analyze the high temperature strain field for carbon-based composite material. In view of the reliable installation of strain gage on carbon-based materials and the difference of thermal characteristics of strain gage, high temperature strain measurement research was conducted for carbon-based composite material and end model. The high temperature strain measurement research for carbon-based composite material were conducted considering four kinds of strain gages installation technics including paste and spray. Validation experiments of high temperature strain measurement on carbon-based flat under high temperature flow field were also carried out. The temperature of strain measurement was up to 900 ℃. High temperature strain measurement applicable experiment for carbon-based end model was carried out in the arc heated wind-tunnel up to 850 ℃. The experimental data of carbon-based end model were analyzed and compared by the finite element method, suggesting the reliability of the experimental results. The highest compression stress of carbon-based end model was 220 MPa. The experimental results showed that stress state of carbon end model was normal.

参考文献

1 孟松鹤, 杨强, 霍施宇, 等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10): 1295-1302.
  MENG S H, YANG Q, HUO S Y, et al. State-of-arts and trend of integrated thermal protection systems[J]. Journal of Astronautics, 2013, 34(10): 1295-1302 (in Chinese).
2 PERAFáN-LóPEZ J C, SIERRA-PéREZ J. An unsupervised pattern recognition methodology based on factor analysis and a genetic-DBSCAN algorithm to infer operational conditions from strain measurements in structural applications[J]. Chinese Journal of Aeronautics, 2021, 34(2): 165-181.
3 LU L L, SONG H W, WANG Y W, et al. Deformation behavior of non-rigid airships in wind tunnel tests[J]. Chinese Journal of Aeronautics, 2019, 32(3): 611-618.
4 邹学锋, 郭定文, 潘凯, 等. 综合载荷环境下高超声速飞行器结构多场联合强度试验技术[J]. 航空学报, 2018, 39(12): 222326.
  ZOU X F, GUO D W, PAN K, et al. Test technique for multi-load combined strength of hypersonic vehicle structure under complex loading environment[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 222326 (in Chinese).
5 吴东, 陈德江, 马昊军. 气动热环境下玻璃窗口热应力试验分析[J]. 空气动力学学报, 2016, 34(5): 592-597.
  WU D, CHEN D J, MA H J. Experimental thermal stress analysis of glass window in aerodynamic thermal environment[J]. Acta Aerodynamica Sinica, 2016, 34(5): 592-597 (in Chinese).
6 陶冶, 田琳, 解梦涛, 等. 大涵道比涡扇发动机风扇叶片动应力测量试飞[J]. 航空发动机, 2017, 43(3): 68-73.
  TAO Y, TIAN L, XIE M T, et al. Flight test on fan-blade vibration stress of high bypass ratio turbofan engine[J]. Aeroengine, 2017, 43(3): 68-73 (in Chinese).
7 李金洋, 毛国培, 李龙, 等. 高温光纤EFPI应变传感技术研究及应用[J]. 载人航天, 2021, 27(5): 633-638.
  LI J Y, MAO G P, LI L, et al. Study on fiber EFPI strain sensor for high temperature and its application[J]. Manned Spaceflight, 2021, 27(5): 633-638 (in Chinese).
8 杨伸勇, 张丛春, 杨卓青, 等. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
  YANG S Y, ZHANG C C, YANG Z Q, et al. Fabrication and piezoresistance of high temperature ITO thin film strain gauge[J]. Journal of Materials Engineering, 2020, 48(4): 145-150 (in Chinese).
9 胡挺, 王文瑞, 尹曰雷, 等. 高温应变片参数标定系统的设计与实验研究[J]. 传感技术学报, 2015, 28(9): 1341-1346.
  HU T, WANG W R, YIN Y L, et al. Design and experiment research of high temperature strain calibration system[J]. Chinese Journal of Sensors and Actuators, 2015, 28(9): 1341-1346 (in Chinese).
10 李丽霞, 蒋军亮, 郝庆瑞, 等. 某种高温合金550℃高温应变测试[J]. 应用力学学报, 2015, 32(3): 378-383, 3.
  LI L X, JIANG J L, HAO Q R, et al. Thermal strain test of high temperature alloy at 550 ℃[J]. Chinese Journal of Applied Mechanics, 2015, 32(3): 378-383, 3 (in Chinese).
11 李翔, 傅波. 高超声速飞行器复杂结构热试验技术 [J]. 航空学报, 2016, 37(S1): 73-79.
  LI X, FU B. Thermal test technique of complex structure of hypersonic aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1): 73-79 (in Chinese).
12 王成亮, 曹志伟, 武小峰, 等. 高温环境下电阻应变测试技术研究[J]. 强度与环境, 2020, 47(3): 51-56.
  WANG C L, CAO Z W, WU X F, et al. Research on resistance strain measuring technology in high temperature environment[J]. Structure & Environment Engineering, 2020, 47(3): 51-56 (in Chinese).
13 MENG S H, DU C, XIE W H, et al. Application of high-temperature optical fiber sensor in temperature and strain testing of hot structure[J]. Journal of Solid Rocket Technology, 2013, 36(5): 701-705.
14 吴东, 陈德江, 周玮, 等. 高热环境下前缘结构高温应变测量[J]. 实验流体力学, 2016, 30(3): 92-97.
  WU D, CHEN D J, ZHOU W, et al. High temperature strain measurement of the front edge structure in high thermal environment[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 92-97 (in Chinese).
15 许艳芝, 雷晓波, 文敏, 等. 某发动机喷管构件高温载荷测量[J]. 机械强度, 2019, 41(3): 696-701.
  XU Y Z, LEI X B, WEN M, et al. High temperature load measurement for nozzle component of a certain aero-engine[J]. Journal of Mechanical Strength, 2019, 41(3): 696-701 (in Chinese).
16 张再德, 文华. 涡轴发动机燃气涡轮叶片动应力测试技术研究及验证[J]. 燃气涡轮试验与研究, 2019, 32(3): 8-12.
  ZHANG Z D, WEN H. Research and verification of dynamic stress measurement technology for turboshaft engine gas turbine blade[J]. Gas Turbine Experiment and Research, 2019, 32(3): 8-12 (in Chinese).
17 王则力, 乔通, 宫文然, 等. 碳基复合材料结构800 ℃光纤高温应变测量[J]. 强度与环境, 2019, 46(3): 1-6.
  WANG Z L, QIAO T, GONG W R, et al. High temperature strain measurement for composite material structure by fiber optical sensor technique[J]. Structure & Environment Engineering, 2019, 46(3): 1-6 (in Chinese).
18 张佳明, 王文瑞, 王刚. 基于接触式高温应变测试试验的涡轮叶片强度分析[J]. 燃气涡轮试验与研究, 2020, 33(2): 25-29, 6.
  ZHANG J M, WANG W R, WANG G. Strength analysis of turbine blade based on contact high temperature strain test experiment[J]. Gas Turbine Experiment and Research, 2020, 33(2): 25-29, 6 (in Chinese).
19 TORRES B, PAYá-ZAFORTEZA I, CALDERóN P A, et al. Analysis of the strain transfer in a new FBG sensor for structural health monitoring[J]. Engineering Structures, 2011, 33(2): 539-548.
20 ANTHONY P. Application of high-temperature extrinsic fabry-perot interferometer strain sensor[C]∥Aeronautic Sensors Working Group, 2008.
21 GREGORY O J, CHEN X M. A low TCR nanocomposite strain gage for high temperature aerospace applications[C]∥ 2007 IEEE SENSORS. Piscataway: IEEE Press, 2007: 624-627.
22 GLASS D, BELVIN H. Airframe technology development for next generation launch vehicle [C]∥ 12th AIAA International Space Planes and Hypersonic Systems and Technologies. Reston: AIAA, 2003.
23 BHOWMIK K, PENG G D, LUO Y H, et al. High intrinsic sensitivity etched polymer fiber Bragg grating pair for simultaneous strain and temperature measurements[J]. IEEE Sensors Journal, 2016, 16(8): 2453-2459.
文章导航

/