电子电气工程与控制

航天器太阳翼在轨挠性振动测量中的无依托敏感技术

  • 郎燕 ,
  • 梁鹤 ,
  • 袁利 ,
  • 张锦江 ,
  • 郭朝礼 ,
  • 张国琪 ,
  • 尹涛
展开
  • 1.北京控制工程研究所,北京  100094
    2.中国空间技术研究院,北京  100094
    3.空间智能控制技术重点实验室,北京  100094
.E-mail: yuanli@spacechina.com

收稿日期: 2022-06-20

  修回日期: 2022-07-11

  录用日期: 2022-09-01

  网络出版日期: 2022-09-13

基金资助

国家重点研发计划(2021YFB3203100)

Unsupported sensing technology of on⁃orbit vibration measurement of flexible spacecraft solar array

  • Yan LANG ,
  • He LIANG ,
  • Li YUAN ,
  • Jinjiang ZHANG ,
  • Chaoli GUO ,
  • Guoqi ZHANG ,
  • Tao YIN
Expand
  • 1.Beijing Institute of Control Engineering,Beijing 100094,China
    2.China Academy of Space Technology,Beijing 100094,China
    3.Science and Technology on Space Intelligent Control Laboratory,Beijing 100094,China

Received date: 2022-06-20

  Revised date: 2022-07-11

  Accepted date: 2022-09-01

  Online published: 2022-09-13

Supported by

National Key Research and Development Program(2021YFB3203100)

摘要

基于自供电无线加速度计网络,中国空间站天和核心舱、问天实验舱分别于2021年5月、2022年7月针对大型柔性太阳翼在轨开展了振动测量和挠性参数辨识试验。以该任务需求为牵引和实践,总结了无依托敏感技术在空间探测任务中需具备的若干核心能力,包括自供电自充电、无依托敏感器间数据代传、高可靠数据采集、高精度时间同步和自主休眠唤醒等方面。详细阐述了上述能力的设计思路和实现方案,并给出了空间站太阳翼在轨振动测量任务中无依托敏感器的实际应用结果。在轨测试数据验证了所提出的无依托敏感技术设计策略的有效性和合理性。

本文引用格式

郎燕 , 梁鹤 , 袁利 , 张锦江 , 郭朝礼 , 张国琪 , 尹涛 . 航天器太阳翼在轨挠性振动测量中的无依托敏感技术[J]. 航空学报, 2023 , 44(10) : 327644 -327644 . DOI: 10.7527/S1000-6893.2022.27644

Abstract

Based on the self-powered wireless accelerometers network, on-orbit flexible vibration measurement and parameter identification tests for the large solar array are carried out in the Tianhe core module and Wentian laboratory module of China space station in May 2021 and July 2022, respectively. Based on the requirements of the missions, the core capabilities of the unsupported sensing technology in the space exploration mission are summarized in this paper, including self-power supply and self-charging, data transmitted between unsupported sensors, highly reliable data acquisition, high-precision time synchronization, and autonomous sleep wake-up. The design ideas and implementation schemes of the above capabilities are described in detail, and the actual verification results of the unsupported sensor in the space station solar array vibration measurement task are given. On-orbit test results demonstrate the effectiveness and rationality of the proposed strategies.

参考文献

1 屠善澄. 卫星姿态动力学与控制-1[M]. 北京: 宇航出版社, 1999: 162-163.
  TU S C. Satellite attitude dynamics and control-1[M]. Beijing: China Aerospace Press, 1999: 162-163 (in Chinese).
2 刘伦. 航天器姿态运动与太阳翼结构振动耦合分析及协同控制[D]. 哈尔滨: 哈尔滨工业大学, 2017: 1-16, 75-116.
  LIU L. Coupled analysis and cooperative control for spacecraft attitude motion and solar panel vibration[D]. Harbin: Harbin Institute of Technology, 2017: 1-16, 75-116 (in Chinese).
3 谢永. 航天器挠性参数的在轨辨识与模型修正[D]. 上海: 上海交通大学, 2016: 1-15.
  XIE Y. On-orbit parameter identification and model updating of spacecraft[D]. Shanghai: Shanghai Jiao Tong University, 2016: 1-15 (in Chinese).
4 郎燕, 于丹, 刘鹏. 航天器大型柔性太阳翼挠性形变视觉测量优化设计[J]. 载人航天201622(6): 781-787.
  LANG Y, YU D, LIU P. Optimization design of on-orbit vision measurement in spacecraft large flexible solar arrays deformation[J]. Manned Spaceflight201622(6): 781-787 (in Chinese).
5 谢永, 刘盼, 蔡国平. 基于加速度信号的柔性板的挠性参数辨识[J]. 力学学报201446(1): 128-135.
  XIE Y, LIU P, CAI G P. Parameter identification of flexible plate based on the acceleration output[J]. Chinese Journal of Theoretical and Applied Mechanics201446(1): 128-135 (in Chinese).
6 SAPP C A, DRAGG J L, SNYDER M W, et al. Photogrammetric assessment of the Hubble space telescope solar arrays during the second servicing mission: NASA/TP-98-201793 [R]. Washington, D.C.: NASA, 1998.
7 ANTHONY T, ANDERSEN G. On-orbit modal identification of the Hubble space telescope[C]∥Proceedings of 1995 American Control Conference - ACC’95. Piscataway: IEEE Press, 2002: 402-406.
8 KIM H M, KAOUK M. Mir structural dynamics experiment: First test and model refinement[C]∥Proceedings of the 40th Sustainable Design and Manufacturing Conference,Reston: AIAA, 1999.
9 KAOUK M, MCNEILL S, HALEY S,et al. Shuttle-ISS flight-7A on orbit test verification: Pre and post flight analysis[R]. Washington: Society for Experimental Mechanics, The Boeing Company, 2003.
10 ADACHI S, YAMAGUCHI I. On-orbit system identification experiments on Engineering Test Satellite-VI[J]. Control Engineering Practice19997(7): 831-841.
11 KASAI T, YAMAGUCHI I, IGAWA H, et al. A case study of on-orbit system identification experiments on Engineering Test Satellite-VIII[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Space Technology Japan20097(3): 277-283 (in Japanese).
12 FORESTER S M. Energy harvesting for self-powered, ultra-low power microsystems with a focus on vibration-based electromechanical conversion[D]. Annapolis: United States Naval Academy, 1999.
13 GAO Y F, ZHANG G F, WANG X F. A miniature composite energy harvesting system for wireless sensor nodes[J]. Nanotechnology and Precision Engineering201210(4): 327-331.
14 黄瑞. 基于环境能量收集的自供能无线传感系统的能量管理研究[D]. 成都: 电子科技大学, 2019: 1-25.
  HUANG R. Research on energy management of self-powered wireless sensor system based on environmental energy harvesting[D]. Chengdu: University of Electronic Science and Technology of China, 2019: 1-25 (in Chinese).
15 吴寅. 采用环境能量的自供电无线传感器网络关键技术研究[D]. 南京: 南京航空航天大学, 2013: 1-34.
  WU Y. Key technology research of energy harvesting wireless sensor networks[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013: 1-34 (in Chinese).
16 BENTUM M J, VAN DER MAREL J, VERHOEVEN C J M, et al. Measuring the Delfi-C3 satellite using the westerbork synthesis radio telescope[C]∥ 2012 6th European Conference on Antennas and Propagation (EUCAP). Piscataway: IEEE Press, 2012: 1095-1098.
17 DE BOOM C W, LEIJTENS J A P, DUIVENBODE L M H V, et al. Micro digital Sun sensor: System in a package[C]∥ 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS’04). Piscataway: IEEE Press, 2005: 322-328.
18 BARNHART D J, VLADIMIROVA T, SWEETING M N. System-on-a-chip design of self-powered wireless sensor nodes for hostile environments[C]∥2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-12.
19 ANONYMOUS. Wind-driven wireless networked system of mobile sensors for Mars exploration[J]. NASA Tech Briefs201337(1): 42-43.
20 HE C R, KIZIROGLOU M E, YATES D C, et al. A MEMS self-powered sensor and RF transmission platform for WSN nodes[J]. IEEE Sensors Journal201111(12): 3437-3445.
21 郎燕, 张国琪. 空间站太阳翼挠性测量与控制试验系统在轨实施方案[R]. 北京: 北京控制工程研究所, 2020: 1-40.
  LANG Y, ZHANG G Q. On-orbit implementation scheme of solar array flexibility measurement and control test system of China space station[R]. Beijing, Beijing Institute of Control Engineering2020: 1-40 (in Chinese).
文章导航

/