基于等离子体炬的磁流体动力学实验系统

  • 化为卓 ,
  • 高岭 ,
  • 陈戈 ,
  • 李益文 ,
  • 巩耕 ,
  • 王延涛 ,
  • 魏彪
展开
  • 1.空军工程大学 等离子体动力学国防科技重点实验室,西安 710038
    2.西安空天能源动力智能制造研究院有限公司,西安 710100
    3.西安优耐特容器制造有限公司,西安 710201
    4.中国人民解放军 95655部队,成都 611500
. E-mail: hwz1991@sina.com

收稿日期: 2022-06-29

  修回日期: 2022-07-27

  录用日期: 2022-08-15

  网络出版日期: 2022-08-31

基金资助

国家自然科学基金(12102478);装备预先研究项目(61407210105);陕西省自然科学基础研究计划(2021JQ-356)

Experimental magneto-hydrodynamic system based on plasma torch

  • Weizhuo HUA ,
  • Ling GAO ,
  • Ge CHEN ,
  • Yiwen LI ,
  • Geng GONG ,
  • Yantao WANG ,
  • Biao WEI
Expand
  • 1.Key Laboratories for National Defense Science and Technology on Plasma Dynamics,Air Force Engineering University,Xi’an 710038,China
    2.Xi’an Aero-Space Engine & Smart Manufacturing Institute Co. ,Ltd,Xi’an 710100,China
    3.Xi’an United Pressure Vessel Co. ,Ltd,Xi’an 710201,China
    4.Troop 95655,People’s Liberation Army of China,Chengdu 611500,China
E-mail: hwz1991@sina.com

Received date: 2022-06-29

  Revised date: 2022-07-27

  Accepted date: 2022-08-15

  Online published: 2022-08-31

Supported by

National Natural Science Foundation of China(12102478);Preliminary Research of Equipment(61407210105);Natural Science Basic Research Plan in Shaanxi Province of China(2021JQ-356)

摘要

针对磁流体动力学技术在高超声速飞行器、海洋波浪能、核能和太阳能等领域的应用需求开展磁流体动力学地面实验系统建设,详细介绍了基于等离子体炬的磁流体动力学实验系统的基本组成、设计思路和测试情况。研制了马赫数Ma=1.5的超声速喷管和磁流体试验段,在等离子体炬功率120 kW时测试通道内电导率最高达14 S/m,平均电导率约9 S/m,通过理论计算可知在电导率为9 S/m的情况下,一对测试电极的输出功率可达1 872.96 W,测试试验段整体输出功率达5 993.47 W。该地面实验系统可用于磁流体发电、磁流体加速、磁流体流动控制等磁流体动力学研究。

本文引用格式

化为卓 , 高岭 , 陈戈 , 李益文 , 巩耕 , 王延涛 , 魏彪 . 基于等离子体炬的磁流体动力学实验系统[J]. 航空学报, 2022 , 43(S2) : 1 -7 . DOI: 10.7527/S1000-6893.2022.27699

Abstract

To explore the application of the magneto-hydrodynamic technology to fields such as hypersonic vehicles and exploitation of wave energy, nuclear energy and solar energy, we establish an experimental MHD system, introducing its composition, design, and test results. An MHD channel with a supersonic nozzle of Ma=1.5 is developed, with the electrical conductivity in the channel reaching 14 S/m in an average of 9 S/m when the power of the plasma torch is 120 kW. Theoretical calculation indicates that with the electrical conductivity of 9 S/m, the output power of the MHD channel could reach 1 872.96 W for a single electrode and 5 993.47 W for the whole channel. The experimental results show that the experimental MHD system based on the plasma torch is capable of the ground-experiments for MHD power generation, MHD acceleration and MHD flow control.

参考文献

1 李益文, 张百灵, 李应红, 等. 磁流体动力学在航空工程中的应用与展望[J]. 力学进展, 2017, 47: 201713.
  LI Y W, ZHANG B L, LI Y H, et al. Applications and prospects of magnetohydrodynamics in aeronautical engineering[J]. Advances in Mechanics, 2017, 47: 201713 (in Chinese).
2 李成智. 郭永怀: 中国卓越的力学家[J]. 自然辩证法通讯, 1988, 10(5): 65-77, 80.
  LI C Z. Guo Yonghuai: An eminent Chinese scientist of mechanics[J]. Journal of Dialectics of Nature, 1988, 10(5): 65-77, 80 (in Chinese).
3 刘鑑民. 磁流体发电[M]. 北京: 机械工业出版社, 1984: 1-3.
  LIU J M. Magnetohydrodynamic generation[M]. Beijing: China Machine Press, 1984: 1-3 (in Chinese).
4 居滋象, 彭燕. 磁流体发电[J]. 电气时代, 2002(11): 12-13.
  JU Z X, PENG Y. Magnetohydrodynamic generation[J]. Electric Age, 2002(11): 12-13 (in Chinese).
5 Novichkov N. At hypersonic speeds (in the large-scale plan): FASTC-ID(RS) T-0972-92[R]. Ohio: Foreign Aerospace Science and Technology Center, 1993.
6 KURANOV A, KORABELNICOV A, KICHINSKIY V, et al. Fundamental techniques of the “AJAX” concept—Modern state of research[C]∥ 10th AIAA/NAL-NASDA-ISAS International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2001: 1915.
7 丁明松, 刘庆宗, 江涛, 等. 高温气体效应对高超声速磁流体控制的影响[J]. 航空学报, 2020, 41(2): 123278.
  DING M S, LIU Q Z, JIANG T, et al. Impact of high temperature gas effect on hypersonic magnetohydrodynamic control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2): 123278 (in Chinese).
8 WILSON R, LASTER M, JORDON J, et al. Plans and status of the RDHWT/MARIAH II facility research program: AIAA-2004-2479[R]. Reston: AIAA, 2004.
9 欧东斌, 曾徽, 马汉东, 等. 磁流体加速和磁流体加速风洞[J]. 气体物理, 2019, 4(3): 54-63.
  OU D B, ZENG H, MA H D, et al. Magneto-hydro-dynamic acceleration and magneto-hydro-dynamic wind tunnel[J]. Physics of Gases, 2019, 4(3): 54-63 (in Chinese).
10 LINEBERRY J, BEGG L, CASTRO J, et al. Scramjet driven MHD power demonstration test—HVEPS project overview[C]∥ 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2006: 2006-8010.
11 MOELLER T, LINEBERRY J, BEGG L L, et al. HVEPS combustion driven MHD power demonstration tests[C]∥ 39th Plasmadynamics and Lasers Conference. Reston: AIAA, 2008: 4097.
12 FALEMPIN F, FIRSOV A A, YARANTSEV D A, et al. Plasma control of shock wave configuration in off-design mode of M=2 inlet[J]. Experiments in Fluids, 2015, 56(3): 54.
13 李益文, 王宇天, 庞垒, 等. 进气道等离子体/磁流体流动控制研究进展[J]. 力学学报, 2019, 51(2): 311-321.
  LI Y W, WANG Y T, PANG L, et al. Research progress of plasma/MHD flow control in inlet[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 311-321 (in Chinese).
14 李益文, 李应红, 张百灵, 等. 基于激波风洞的超声速磁流体动力技术实验系统[J]. 航空学报, 2011, 32(6): 1015-1024.
  LI Y W, LI Y H, ZHANG B L, et al. Supersonic magnetohydrodynamic technical experimental system based on shock tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6): 1015-1024 (in Chinese).
15 高岭, 李益文, 张百灵, 等. 高温磁流体动力技术实验系统设计与调试[J]. 推进技术, 2015, 36(5): 774-779.
  GAO L, LI Y W, ZHANG B L, et al. High temperature MHD technology system design and commissioning experiments[J]. Journal of Propulsion Technology, 2015, 36(5): 774-779 (in Chinese).
16 欧东斌, 曾徽, 杨国铭, 等. 电弧加热高温磁流体发电地面试验研究[J]. 实验流体力学, 2019, 33(5): 43-49.
  OU D B, ZENG H, YANG G M, et al. Experimental study of magnetohydrodynamic power generation system in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 43-49 (in Chinese).
17 黄护林, 李林永, 李来, 等. 等离子体磁流体发电研究进展[J]. 深空探测学报, 2018, 5(4): 331-346.
  HUANG H L, LI L Y, LI L, et al. Research progress of plasma magnetic fluid power generation[J]. Journal of Deep Space Exploration, 2018, 5(4): 331-346 (in Chinese).
18 刘华兵, 彭爱武, 赵凌志. 波浪发电系统功率控制方法综述[J]. 电工电能新技术, 2020, 39(5): 49-58.
  LIU H B, PENG A W, ZHAO L Z. Summary of power control methods for wave power generation system[J]. Advanced Technology of Electrical Engineering and Energy, 2020, 39(5): 49-58 (in Chinese).
19 刘飞标, 王铸, 彭燕, 等. 法拉第型磁流体发电机试验和数值仿真[J]. 航空学报, 2020, 41(11): 123980.
  LIU F B, WANG Z, PENG Y, et al. Faraday type MHD generator: Experiment and numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(11): 123980 (in Chinese).
20 黄卫星, 武劭恂, 司徒达志, 等. 直流电弧等离子炬温度场-电场分布特性数值模拟[J]. 工程科学与技术, 2020, 52(5): 236-241.
  HUANG W X, WU S X, SITU D Z, et al. Numerical simulation of the temperature-electrical field characteristics in DC arc plasma torches[J]. Advanced Engineering Sciences, 2020, 52(5): 236-241 (in Chinese).
21 李益文, 化为卓, 陈戈, 等. 一种水冷法拉第型磁流体发电装置: CN114726184A[P]. 2022-07-08.
  LI Y W, HUA W Z, CHEN G, et al. A Faraday MHD electric generator device with water-cooling: CN114726184A[P]. 2022-07-08 (in Chinese).
文章导航

/