流体力学与飞行力学

临近空间高超声速飞行器武器投放方案数值模拟

  • 孙佳濛 ,
  • 左光 ,
  • 徐艺哲 ,
  • 杜若凡 ,
  • 崔玉红
展开
  • 1.天津大学 机械工程学院,天津  300072
    2.蓝箭航天空间科技股份有限公司,北京  100176
    3.中国空间技术研究院 钱学森空间技术实验室,北京  100094
.E-mail: yhcui@tju.edu.cn

收稿日期: 2022-07-14

  修回日期: 2022-07-20

  录用日期: 2022-07-27

  网络出版日期: 2022-08-03

基金资助

CAST创新基金(CAST-2020-02-04)

Numerical simulation of weapon delivery schemes for hypersonic vehicles in near space

  • Jiameng SUN ,
  • Guang ZUO ,
  • Yizhe XU ,
  • Ruofan DU ,
  • Yuhong CUI
Expand
  • 1.School of Mechanical Engineering,Tianjin University,Tianjin  300072,China
    2.Land Space Technology Corporation Ltd,Beijing  100176,China
    3.Qian Xuesen Laboratory of Space Technology,China Academy of Space Technology,Beijing  100094,China
E-mail: yhcui@tju.edu.cn

Received date: 2022-07-14

  Revised date: 2022-07-20

  Accepted date: 2022-07-27

  Online published: 2022-08-03

Supported by

CAST Innovation Fund(20200204)

摘要

针对马赫数4~10的临近空间高超声速飞行器武器投放方案开展数值研究,提出导弹内置投放、舱门开启导弹外挂投放、导弹直接外挂投放、导弹后置滑轨投放4种方案。研究采用基于密度的求解器,采用剪切应力输运 (SST)k-ω湍流模型和二阶迎风的通量格式,同时采用非结构动网格技术,采用计算流体力学 (CFD) 耦合六自由度 (DOF) 方程的方法模拟导弹的投放过程。重点研究了4种投放方案的流场特征、马赫数对导弹投放姿态的影响,攻角对导弹投放姿态的影响,以及不同投放方案的对比。结果表明:舱门开启导弹外挂投放方案和导弹直接外挂投放方案在马赫数4~10时均能以很好的姿态进行投放;导弹内置投放方案在马赫数8、10的超高声速下无法正常投放;导弹后置滑轨投放方案在各马赫数下均不能正常投放;3°的飞行器初始攻角会有效改善导弹投放过程。导弹直接外挂投放方案成功率最高,并且气动干扰最小,是一种较为可行的临近空间高超声速武器投放方案。临近空间高超声速飞行器武器投放研究具有重要实用价值,计算方法和计算模型的尝试对后续开展临近空间的数值研究提供技术支持和参考。

本文引用格式

孙佳濛 , 左光 , 徐艺哲 , 杜若凡 , 崔玉红 . 临近空间高超声速飞行器武器投放方案数值模拟[J]. 航空学报, 2023 , 44(13) : 127808 -127808 . DOI: 10.7527/S1000-6893.2022.27808

Abstract

Numerical research was conducted on the near space hypersonic vehicle missile separation scheme with Mach number 4-10. We proposed four separation schemes including the missile built-in, the hatch opened with missile plug-in, the direct missile plug-in model, and the missile placed behind model. The density-based solver, the Shear Stress Transport (SST) k-ω turbulence model, the second order upwind flux format, as well as the unstructured dynamic grid technology are adopted to simulate the missile launch process with the Computational Fluid Dynamics (CFD) coupled Six Degrees of Freedom (6DOF) equation method. The flow field characteristics of four separation schemes, the influence of the Mach number on the missile separation attitude, the effect of the angle of attack on the missile separation attitude, and comparison of different separation schemes are studied. The results show that both the hatch opened with missile plug-in model and the direct missile plug-in model can be launched with a reasonable attitude in the range of Mach number 4-10, and the missile built-in model cannot be launched normally at high Mach numbers of 8 and 10, while at none of the Mach numbers can the missile placed behind model be launched normally. The initial attack angle of the aircraft of 3° will effectively improve the missile separation process. The direct missile plug-in model has the highest success rate and the least aerodynamic interference. It is therefore a relatively feasible near space hypersonic missile separation scheme. This research has an important practical value, and the attempt of the calculation method and calculation model provides technical support and reference for the subsequent numerical research on near space.

参考文献

1 王全平, 褚显应. 临近空间超声速平台飞行器与关键技术研究[C]∥探索 创新 交流(第7集)——第七届中国航空学会青年科技论坛文集(上册). 北京: 中国航空学会, 2016: 231-234.
  WANG Q P, CHU X Y. Research on near space supersonic platform vehicle and key technologies [C]∥Exploration and Innovation Exchange (7th): Proceedings of the 7th Youth Science and Technology Forum of Chinese Society of Aeronautics and Astronautics (1st volume). Beijing: Chinese Society of Aeronautics and Astronautics, 2016:231-234 (in Chinese).
2 JOHNSONRA R, STANEK M, GROVE J. Store separation trajectory deviations due to unsteady weapons bay aerodynamics: AIAA 2008-188[R]. Reston: AIAA, 2008.
3 田宏亮. 临近空间高超声速武器发展趋势[J]. 航空科学技术201829(6): 1-6.
  TIAN H L. Development trends of near space hypersonic weapon[J]. Aeronautical Science & Technology201829(6): 1-6 (in Chinese).
4 艾邦成. 临近空间高超声速飞行器计算空气动力学[M]. 北京: 科学出版社, 2020: 8-15.
  AI B C. Computational aerodynamics of near-space hypersonic vehicle[M]. Beijing: Science Press, 2020: 8-15 (in Chinese).
5 瞿章华. 高超声速空气动力学[M]. 长沙: 国防科技大学出版社, 1999.
  QU Z H. Hypersonic aerodynamics[M]. Changsha: National Defense Science and Technology University Press, 1999 (in Chinese).
6 杨伟. 关于未来战斗机发展的若干讨论[J]. 航空学报202041(6): 524377.
  YANG W. Development of future fighters[J]. Acta Aeronautica et Astronautica Sinica202041(6): 524377 (in Chinese).
7 LUO R, ZHAO B J. The analysis of the style of U.S. military cloud operation with the fifth generation fighter as its core[C]∥Proc SPIE 11763, Seventh Symposium on Novel Photoelectronic Detection Technology and Applications. Bellingham:SPIE, 202111763: 874-882.
8 朱真真. 超声速内埋式弹舱的气动特性及气动噪声的被动抑制的研究[D]. 天津: 天津大学, 2017.
  ZHU Z Z. Study on aerodynamic characteristics and passive suppression of aerodynamic noise of supersonic embedded bomb bay[D]. Tianjin: Tianjin University, 2017 (in Chinese).
9 金时彧. 内埋式弹舱流场及武器投放轨迹研究[D]. 南京: 南京航空航天大学, 2014.
  JIN S Y. Study on flow field and weapon delivery trajectory of embedded bomb bay[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014 (in Chinese).
10 赵飞, 刘丽玲, 石泳, 等. 类X-43A飞行器高超声速分离仿真[J]. 航空学报202243(5): 125171.
  ZHAO F, LIU L L, SHI Y, et al. Hypersonic separation simulation of aerocraft similar as X-43A[J]. Acta Aeronautica et Astronautica Sinica202243(5): 125171 (in Chinese).
11 庞川博, 向玉伟, 马兴普, 等. 高超声速导弹进气道整流罩分离气动特性研究[J]. 弹箭与制导学报202040(3): 123-128, 134.
  PANG C B, XIANG Y W, MA X P, et al. Research on aerodynamic characteristics of inlet fairing separation from a hypersonic missile[J]. Journal of Projectiles, Rockets, Missiles and Guidance202040(3): 123-128, 134 (in Chinese).
12 闻讯, 柳军, 夏智勋. 吸气式高超声速飞行器助推分离过程数值仿真[J]. 国防科技大学学报201941(1): 34-40.
  WEN X, LIU J, XIA Z X. Numerical simulation of booster separation for an air-breathing hypersonic vehicle[J]. Journal of National University of Defense Technology201941(1): 34-40 (in Chinese).
13 谢军虎, 张士卫, 景凤理. 攻角对临近空间高马赫数机载导弹分离安全性影响分析[J]. 弹箭与制导学报202141(2): 34-40.
  XIE J H, ZHANG S W, JING F L. Analysis on impact of attack angle on separation safety of airborne missile with high Mach number in near space[J]. Journal of Projectiles, Rockets, Missiles and Guidance202141(2): 34-40 (in Chinese).
14 艾邦成, 宋威, 董垒, 等. 内埋武器机弹分离相容性研究进展综述[J]. 航空学报202041(10): 023809.
  AI B C, SONG W, DONG L, et al. Review of aircraft-store separation compatibility of internal weapons[J]. Acta Aeronautica et Astronautica Sinica202041(10): 023809 (in Chinese).
15 Malmuth N, Shalaev A, Fesorov A, Combined asymptotic and numerical methods in transonic store interactions[R]. Reston: Rockwell Science Co., 2002.
16 Malmuth N, Shalaev A, Fesorov A, Mathematical fluid dynamics of store and stage separation[R]. Reston: Rockwell Science Co.,2005.
17 董金刚, 张晨凯, 谢峰, 等. 内埋武器超声速分离机弹干扰特性试验研究[J]. 实验流体力学202135(3): 46-51.
  DONG J G, ZHANG C K, XIE F, et al. Experimental investigations on the separation interference characteristics of supersonic internal weapon releasing from the aircraft[J]. Journal of Experiments in Fluid Mechanics202135(3): 46-51 (in Chinese).
18 HEIM E R. CFD wing/pylon/finned store mutual interference wind tunnel experiment: ADB152669/8/XAB [R]. Belvoir: Department of the Air Force, 1991.
19 林敬周, 王雄, 钟俊, 等. 高马赫数多体分离试验技术研究与应用[J]. 推进技术202041(4): 925-933.
  LIN J Z, WANG X, ZHONG J, et al. Investigation and application of high Mach number multi-body separation test technique[J]. Journal of Propulsion Technology202041(4): 925-933 (in Chinese).
20 郑义, 韩洪涛, 王璐. 2020年国外高超声速技术发展回顾[J]. 战术导弹技术2021(1): 38-43, 106.
  ZHENG Y, HAN H T, WANG L. Review of foreign hypersonic technology development in 2020[J]. Tactical Missile Technology2021(1): 38-43, 106 (in Chinese).
21 王俊伟, 刘都群, 张灿. 2021年国外高超声速领域发展综述[J]. 战术导弹技术2022(1): 29-37.
  WANG J W, LIU D Q, ZHANG C. Review of hypersonic development abroad in 2021[J]. Tactical Missile Technology2022(1): 29-37 (in Chinese).
22 Lawson S J, Barakos G N. Review of numerical simulations for high-speed, turbulent cavity flows[J]. Progress in Aerospace Sciences201147(3): 186-216.
23 罗小松. 高马赫数下凹槽内静动态流场特性及抛物体下落过程流固耦合数值计算[D]. 天津: 天津大学, 2012.
  LUO X S. Numerical analysis of static and dynamic flow characteristics of cavities and fluid-structure interaction of the store separated from cavities in high Mach number[D]. Tianjin: Tianjin University, 2012 (in Chinese).
24 邵亦琪. 超高速内埋式弹舱开舱气动特性的数值计算初步研究[D]. 天津: 天津大学, 2016.
  SHAO Y Q. Research of numerical analysis on aerodynamic characteristics for cavity with opened door in supersonic assumption. Tianjin: Tianjin University, 2016 (in Chinese).
25 刘瑜. 内埋式弹舱武器发射分离过程研究[D]. 南京: 南京航空航天大学, 2010.
  LIU Y. Study on launching separation process of embedded bomb bay weapons[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010 (in Chinese).
26 冯必鸣, 聂万胜, 车学科. 超声速条件下内埋式武器分离特性的数值分析[J]. 飞机设计200929(4): 1-5.
  FENG B M, NIE W S, CHE X K. Simulation of the store separation from a cavity at supersonic speed[J]. Aircraft Design200929(4): 1-5 (in Chinese).
27 杨俊, 张新慧. 内埋武器重力分离特性分析[J]. 航空科学技术201728(9): 10-15.
  YANG J, ZHANG X H. Analysis on gravity separation characteristics for internal store[J]. Aeronautical Science & Technology201728(9): 10-15 (in Chinese).
28 熊有德. 高超声速进气道激波/边界层干扰数值模拟研究[D]. 武汉: 华中科技大学, 2019.
  XIONG Y D. Numerical investigation of shock waves/boundary layer interaction in hypersonic inlet[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese).
29 曹赟琪. 高超声速乘波体的气动特性分析[D]. 哈尔滨: 哈尔滨工程大学, 2020.
  CAO Y Q. Aerodynamic analysis of hypersonic waverider[D]. Harbin: Harbin Engineering University, 2020 (in Chinese).
30 约翰 D. 安德森.计算流体力学基础及其应用[M]. 吴颂平, 刘赵淼, 译. 北京: 机械工业出版社, 2007.
  ANDERSON J D. Computational fluid dynamics[M]. WU S P, LIU Z M, translated. Beijing: China Machine Press, 2007 (in Chinese).
31 DURBIN P A, PETTERSSON REIF B A. Statistical theory and modeling for turbulent flows[M]. 2nd edition. New York: Wiley, 2010.
32 WILCOX D C. Turbulence modeling for CFD[M]. 2nd edition. La Canada Flintridge: DCW Industries, 1998.
33 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal201232(8): 1598-1605.
34 MENTER F R, KUNTZ M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles[M]∥The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains. Berlin, Heidelberg: Springer, 2004: 339-352.
35 MENTER F R, KUNTZ M, LANGTRY R. Ten years of industrial experience with the SST turbulence model[C]∥Proceedings of the Fourth International Symposium on Turbulence, Heat and Mass Transfer. Danbury: Begell House, 2003: 625-632.
36 唐志共, 李彬, 郑鸣, 等. 飞行器外挂投放数值模拟[J]. 空气动力学学报200927(5): 592-596.
  TANG Z G, LI B, ZHENG M, et al. Store separation simulation using overset unstructured grid[J]. Acta Aerodynamica Sinica200927(5): 592-596 (in Chinese).
37 张一帆. 多体分离数值模拟及方法验证[J]. 航空计算技术201343(6): 63-65.
  ZHANG Y F. Validation research on multi-body separation simulation[J]. Aeronautical Computing Technique201343(6): 63-65 (in Chinese).
文章导航

/