固体力学与飞行器总体设计

基于数字孪生的飞机起落架健康管理技术

  • 郭丞皓 ,
  • 于劲松 ,
  • 宋悦 ,
  • 尹琦 ,
  • 李佳璇
展开
  • 1.北京航空航天大学 自动化科学与电气工程学院,北京 100191
    2.航空工业成都飞机工业(集团)有限责任公司,成都 610073
.E-mail: yujs@buaa.edu.cn

收稿日期: 2022-06-15

  修回日期: 2022-07-02

  录用日期: 2022-07-06

  网络出版日期: 2022-07-14

基金资助

国家重点研发计划(2022YFB3304600);国家自然科学基金(51875018)

Application of digital twin⁃based aircraft landing gear health management technology

  • Chenghao GUO ,
  • Jinsong YU ,
  • Yue SONG ,
  • Qi YIN ,
  • Jiaxuan LI
Expand
  • 1.School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China
    2.Avic Chengdu Aircraft Industrial (Group) Co. Ltd,Chengdu 610073,China
E-mail: yujs@buaa.edu.cn

Received date: 2022-06-15

  Revised date: 2022-07-02

  Accepted date: 2022-07-06

  Online published: 2022-07-14

Supported by

National Key R&D Program of China(2022YFB3304600);National Natural Science Foundation of China(51875018)

摘要

针对飞机起落架系统,传统健康管理方式存在知识不完备、数据不平衡和模型固化等问题,开展了数字孪生驱动的健康管理技术研究,提出以自更新模型为基础实现故障诊断与预测的数字孪生健康管理框架。从起落架系统物理和行为2个维度建立孪生模型来实现真实系统的数字映射,依托强化学习算法实现数字孪生模型参数的更新,确保孪生模型实时跟踪和反映实体健康状态,并以此为基础设计基于事件的故障诊断和基于粒子滤波的故障预测方案。以起落架收放系统为例完成实验验证,与传统方法相比,本文方法在实时性、准确性和鲁棒性方面表现更优。

本文引用格式

郭丞皓 , 于劲松 , 宋悦 , 尹琦 , 李佳璇 . 基于数字孪生的飞机起落架健康管理技术[J]. 航空学报, 2023 , 44(11) : 227629 -227629 . DOI: 10.7527/S1000-6893.2022.27629

Abstract

Traditional health management methods for aircraft landing gear systems face the problems of inadequate knowledge, unbalanced data, and rigidified models. This paper explores the application of the digital twin-driven health management technology, and proposes a digital twin health management framework based on self-updating models to reliably complete diagnostic and prediction tasks. The digital twin model is established from physical and behavior dimensions to realize the digital mapping of real systems. The reinforcement learning algorithm is used to update the parameters of the digital twin model to ensure real-time tracking and reflection of the entity health status by the twin model. Further, event-based fault diagnosis and particle filter scheme-based fault prediction are designed. In the validation experiment with the retraction/extension as an example, our method exhibits better performance in terms of real-time, accuracy and robustness than traditional methods.

参考文献

1 EASA. Annual safety review 2021[R]. Germany: European Union Aviation Safety Agency, 2021.
2 陈新霞, 刘煜原, 黄加阳, 等. 基于贝叶斯网络推理的起落架系统故障诊断技术研究[J]. 计算机测量与控制201624(10): 24-27.
  CHEN X X, LIU Y Y, HUANG J Y, et al. Fault diagnosis of landing gear system based on Bayesian network inference[J]. Computer Measurement & Control201624(10): 24-27 (in Chinese).
3 PHILLIPS P, DISTON D, STARR A. Perspectives on the commercial development of landing gear health monitoring systems[J]. Transportation Research Part C: Emerging Technologies201119(6): 1339-1352.
4 ZHANG H G, KANG R, PECHT M. A hybrid prognostics and health management approach for condition-based maintenance[C]∥2009 IEEE International Conference on Industrial Engineering and Engineering Management. Piscataway: IEEE Press, 2010: 1165-1169.
5 AHMADI A, FRANSSON T, CRONA A, et al. Integration of RCM and PHM for the next generation of aircraft[C]∥2009 IEEE Aerospace Conference. Piscataway: IEEE Press, 2009: 1-9.
6 CHEN J, CHEN S Y, LIU Z B, et al. Health monitoring of landing gear retraction/extension system based on optimized fuzzy C-means algorithm[J]. IEEE Access20208: 219611-219621.
7 YANG Y. Aircraft landing gear extension and retraction control system diagnostics, prognostics and health management[D]. Bedfordshire: Cranfield University, 2012.
8 HOLMES G, SARTOR P, REED S, et al. Prediction of landing gear loads using machine learning techniques[J]. Structural Health Monitoring201615(5): 568-582.
9 BYINGTON C S, WATSON M, EDWARDS D. Data-driven neural network methodology to remaining life predictions for aircraft actuator components[C]∥ 2004 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2004: 3581-3589.
10 DZIENDZIKOWSKI M, KURNYTA A, REYMER P, et al. Application of operational load monitoring system for fatigue estimation of main landing gear attachment frame of an aircraft[J]. Materials202114(21): 6564.
11 SARTOR P, SCHMIDT R K. Aircraft landing gear structural health monitoring using a loads monitoring approach[J]. Revue Internationale de la Croix-Rouge et Bulletin international des Sociétés de la Croix-Rouge200833(387): f1-f10.
12 LI C Z, MAHADEVAN S, LING Y, et al. Dynamic Bayesian network for aircraft wing health monitoring digital twin[J]. AIAA Journal201755(3), doi: 10.2514/1.J055201 .
13 TAO F, ZHANG M, LIU Y S, et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals201867(1): 169-172.
14 LI W H, RENTEMEISTER M, BADEDA J, et al. Digital twin for battery systems: Cloud battery management system with online state-of-charge and state-of-health estimation[J]. Journal of Energy Storage202030: 101557.
15 HE B, LIU L, ZHANG D. Digital twin-driven remaining useful life prediction for gear performance degradation: a review[J]. Journal of Computing and Information Science in Engineering202121(3): 030801.
16 WANG Y C, TAO F, ZHANG M, et al. Digital twin enhanced fault prediction for the autoclave with insufficient data[J]. Journal of Manufacturing Systems202160: 350-359.
17 YE Y M, YANG Q, YANG F, et al. Digital twin for the structural health management of reusable spacecraft: a case study[J]. Engineering Fracture Mechanics2020234: 107076.
18 PILTAN F, TOMA R N, SHON D, et al. Strict-feedback backstepping digital twin and machine learning solution in AE signals for bearing crack identification[J]. Sensors202222(2): 539.
19 NASA. 2020 NASA technology taxonomy[R]. Washington D.C.: NASA, 2020.
20 MOSTERMAN P J, BISWAS G. A theory of discontinuities in physical system models[J]. Journal of the Franklin Institute1998355(3): 401-439.
21 DAIGLE M J, ROYCHOUDHURY I, BISWAS G, et al. A comprehensive diagnosis methodology for complex hybrid systems: a case study on spacecraft power distribution systems[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans201040(5): 917-931.
22 DAIGLE M J, KOUTSOUKOS X D, BISWAS G. A qualitative event-based approach to continuous systems diagnosis[J]. IEEE Transactions on Control Systems Technology200917(4): 780-793.
23 ROYCHOUDHURY I, DAIGLE M, BREGON A, et al. A structural model decomposition framework for systems health management[C]∥ 2013 IEEE Aerospace Conference. Piscataway: IEEE Press, 2013: 1-12.
24 LILLEY D S, MATHé P, SCHLO?HAUE V. Calibration and uncertainty quantification of gas turbine performance models[C]∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: AMSE, 2015, doi: 10.1115/GT2015-42392 .
25 BORGUET S. Variations on the Kalman filter for enhanced performance monitoring of gas turbine engines[D]. Liège: University of Liège, 2012.
26 RUTTER C M, MIGLIORETTI D L, SAVARINO J E. Bayesian calibration of microsimulation models[J]. Journal of the American Statistical Association2009104(488): 1338-1350.
27 LIU S Q, BOROVYKH A, GRZELAK L A, et al. A neural network-based framework for financial model calibration[J]. Journal of Mathematics in Industry20199(1): 9.
28 TIAN Y, CHAO M A, KULKARNI C, et al. Real-time model calibration with deep reinforcement learning[DB/OL]. arXiv preprint2006.04001, 2020.
29 MOSTERMAN P J, BISWAS G. Diagnosis of continuous valued systems in transient operating regions[J]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans199929(6): 554-565.
30 DAIGLE M J, KOUTSOUKOS X D, BISWAS G. An event-based approach to integrated parametric and discrete fault diagnosis in hybrid systems[J]. Transactions of the Institute of Measurement and Control201032(5): 487-510.
31 BISWAS G, SIMON G, MAHADEVAN N, et al. A robust method for hybrid diagnosis of complex systems[J]. IFAC Proceedings Volumes. 200336(5): 1023-1028.
32 SAHA B, GOEBEL K. Modeling Li-ion battery capacity depletion in a particle filtering framework[C]∥Annual Conference of the PHM Society. 2009.
33 DAIGLE M J, GOEBEL K. A model-based prognostics approach applied to pneumatic valves[J]. International Journal of Prognostics and Health Management20112(2), doi: 10.36001/ijphm.2011.v2i2.1359 .
34 DAIGLE M, GOEBEL K. Multiple damage progression paths in model-based prognostics[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 3621-3630.
35 胡晓青, 马存宝, 和麟, 等. 飞机起落架收放系统建模与故障仿真[J]. 计算机工程与科学201638(6): 1286-1293.
  HU X Q, MA C B, HE L, et al. Modeling and fault simulation of the landing gear extension and retraction system[J]. Computer Engineering & Science201638(6): 1286-1293 (in Chinese).
36 DEB S, GHOSHAL S, MATHUR A, et al. Multisignal modeling for diagnosis, FMECA, and reliability[C]∥ SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway: IEEE Press, 2002: 3026-3031.
文章导航

/