[1] 刘昌奎, 李楠, 赵文侠, 等. 航空材料组织与残余应力评价对中子散射与同步辐射技术的需求[J]. 失效分析与预防, 2019, 14(2):133-140. LIU C K, LI N, ZHAO W X, et al. Requirements of microstructure and residual stress evaluation of aeronautical materials for neutron scattering and synchrotron radiation techniques[J]. Failure Analysis and Prevention, 2019, 14(2):133-140(in Chinese).
[2] KAYSSER W, ESSLINGER J, ABETZ V, et al. Research with neutron and synchrotron radiation on aerospace and automotive materials and components[J]. Advanced Engineering Materials, 2011, 13(8):637-657.
[3] 麦振洪, 刘祖平, 高琛, 等. 同步辐射光源及其应用上[M]. 北京:科学出版社, 2013:169-172. MAI Z H, LIU Z P, GAO C, et al. Synchrotron radiation source and its application[M]. Beijing:Science Press, 2013:169-172(in Chinese).
[4] HUSSEINI N S, KUMAH D P, YI J Z, et al. Mapping single-crystal dendritic microstructure and defects in nickel-base superalloys with synchrotron radiation[J]. Acta Materialia, 2008, 56(17):4715-4723.
[5] AVESON J W, REINHART G, NGUYEN-THI H, et al. Dendrite bending during directional solidification[M]//Superalloys 2012. Hoboken:John Wiley & Sons, Inc., 2012:615-624.
[6] AZEEM M A, LEE P D, PHILLION A B, et al. Revealing dendritic pattern formation in Ni, Fe and Co alloys using synchrotron tomography[J]. Acta Materialia, 2017, 128:241-248.
[7] REINHART G, GRANGE D'ABOU-KHALIL L, et al. Impact of solute flow during directional solidification of a Ni-based alloy:In-situ and real-time X-radiography[J]. Acta Materialia, 2020, 194:68-79.
[8] YAN Z R, TAN Q, HUANG H, et al. Phase evolution and thermal expansion behavior of a γ' precipitated Ni-based superalloy by synchrotron X-ray diffraction[J]. Acta Metallurgica Sinica (English Letters), 2022, 35(1):93-102.
[9] DIOLOGENT F, CARON P, D'ALMEIDA T, et al. Temperature dependence of lattice mismatch and γ' volume fraction of a fourth-generation monocrystalline nickel-based superalloy[J]. International Journal of Materials Research, 2006, 97(8):1136-1142.
[10] CHEN Y Q, PRASATH BABU R, SLATER T J A, et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy[J]. Acta Materialia, 2016, 110:295-305.
[11] ROBINSON J B, BROWN L D, JERVIS R, et al. A novel high-temperature furnace for combined in situ synchrotron X-ray diffraction and infrared thermal imaging to investigate the effects of thermal gradients upon the structure of ceramic materials[J]. Journal of Synchrotron Radiation, 2014, 21(5):1134-1139.
[12] 王沿东, 李润光, 聂志华, 等. 中子/同步辐射衍射表征技术及其在工程材料研究中的应用[J]. 工程科学学报, 2022, 44(4):676-689. WANG Y D, LI R G, NIE Z H, et al. A review on the application of neutron and high-energy X-ray diffraction characterization methods in engineering materials[J]. Chinese Journal of Engineering, 2022, 44(4):676-689(in Chinese).
[13] LIU X G, WANG L, LOU L H, et al. Effect of Mo addition on microstructural characteristics in a Re-containing single crystal superalloy[J]. Journal of Materials Science & Technology, 2015, 31(2):143-147.
[14] BRUNO G, SCHUMACHER G, PINTO H C, et al. Measurement of the lattice misfit of the nickel-base superalloy SC16 by high-energy synchrotron radiation[J]. Metallurgical and Materials Transactions A, 2003, 34(2):193-197.
[15] PINTO H C, BRUNO G. Formation and relaxation of coherency strain in the nickel-base superalloy SC16[J]. Journal of Synchrotron Radiation, 2003, 10(2):148-153.
[16] JACQUES A, BASTIE P. The evolution of the lattice parameter mismatch of a nickel-based superalloy during a high-temperature creep test[J]. Philosophical Magazine, 2003, 83(26):3005-3027.
[17] DIRAND L, CORMIER J, JACQUES A, et al. Measurement of the effective γ/γ' lattice mismatch during high temperature creep of Ni-based single crystal superalloy[J]. Materials Characterization, 2013, 77:32-46.
[18] DIRAND L, JACQUES A, CHATEAU-CORNU J P, et al. Phase-specific high temperature creep behaviour of a pre-rafted Ni-based superalloy studied by X-ray synchrotron diffraction[J]. Philosophical Magazine, 2013, 93(10-12):1384-1412.
[19] LE GRAVEREND J B, DIRAND L, JACQUES A, et al. In situ measurement of the γ/γ' lattice mismatch evolution of a nickel-based single-crystal superalloy during non-isothermal very high-temperature creep experiments[J]. Metallurgical and Materials Transactions A, 2012, 43A(11):3946-3951.
[20] LE GRAVEREND J B, JACQUES A, CORMIER J, et al. Creep of a nickel-based single-crystal superalloy during very high-temperature jumps followed by synchrotron X-ray diffraction[J]. Acta Materialia, 2015, 84:65-79.
[21] 李嘉荣, 谢洪吉, 韩梅, 等. 第二代单晶高温合金高周疲劳行为研究[J]. 金属学报, 2019, 55(9):1195-1203. LI J R, XIE H J, HAN M, et al. High cycle fatigue behavior of second generation single crystal superalloy[J]. Acta Metallurgica Sinica, 2019, 55(9):1195-1203(in Chinese).
[22] JIMÉNEZ M, LUDWIG W, GONZALEZ D, et al. The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys[J]. Scripta Materialia, 2019, 162:261-265.
[23] NARAGANI D, SANGID M D, SHADE P A, et al. Investigation of fatigue crack initiation from a non-metallic inclusion via high energy x-ray diffraction microscopy[J]. Acta Materialia, 2017, 137:71-84.
[24] NARAGANI D P, SHADE P A, KENESEI P, et al. X-ray characterization of the micromechanical response ahead of a propagating small fatigue crack in a Ni-based superalloy[J]. Acta Materialia, 2019, 179:342-359.
[25] LI H W, ZHUANG X L, LU S, et al. Hot deformation behavior and flow stress modeling of a novel CoNi-based wrought superalloy[J]. Journal of Alloys and Compounds, 2022, 894:162489.
[26] FREUND L P, STARK A, PYCZAK F, et al. The grain boundary pinning effect of the μ phase in an advanced polycrystalline γ/γ' Co-base superalloy[J]. Journal of Alloys and Compounds, 2018, 753:333-342.
[27] FREUND L P, STARK A, KIRCHMAYER A, et al. The effect of a grain boundary pinning B2 phase on polycrystalline Co-based superalloys with reduced density[J]. Metallurgical and Materials Transactions A, 2018, 49A(9):4070-4078.
[28] WANG L, SONG L, STARK A, et al. Identification of Laves phases in a Zr or Hf containing γ-γ' Co-base superalloy[J]. Journal of Alloys and Compounds, 2019, 805:880-886.
[29] FENG Y, DONG T S, LI G L, et al. The roles of stress in the thermal shock failure of YSZ TBCs before and after laser remelting[J]. Journal of Alloys and Compounds, 2020, 828:154417.
[30] WEYANT C M, ALMER J, FABER K T. Through-thickness determination of phase composition and residual stresses in thermal barrier coatings using high-energy X-rays[J]. Acta Materialia, 2010, 58(3):943-951.
[31] LEONI M, JONES R L, SCARDI P. Phase stability of scandia-yttria-stabilized zirconia TBCs[J]. Surface and Coatings Technology, 1998, 108-109:107-113.
[32] STATHOPOULOS V, SADYKOV V, PAVLOVA S, et al. Design of functionally graded multilayer thermal barrier coatings for gas turbine application[J]. Surface & Coatings Technology, 2016, 295:20-28.
[33] THORNTON J, WOOD C, KIMPTON J A, et al. Failure mechanisms of calcium magnesium aluminum silicate affected thermal barrier coatings[J]. Journal of the American Ceramic Society, 2017, 100(6):2679-2689.
[34] NEGAMI M, HIBINO S, KAWANO A, et al. Development of highly durable thermal barrier coating by suppression of thermally grown oxide[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(8):082101.
[35] REDDY A, HOVIS D B, HEUER A H, et al. In situ study of oxidation-induced growth strains in a model NiCrAlY bond-coat alloy[J].Oxidation of Metals, 2007, 67(3-4):153-177.
[36] HAYASHI S, FORD S I, YOUNG D J, et al. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150℃[J]. Acta Materialia, 2005, 53(11):3319-3328.
[37] PLANCHER E, GRAVIER P, CHAUVET E, et al. Tracking pores during solidification of a Ni-based superalloy using 4D synchrotron microtomography[J]. Acta Materialia, 2019, 181:1-9.
[38] ZHU Q, CHEN G, WANG C J, et al. Tensile deformation and fracture behaviors of a nickel-based superalloy via in situ digital image correlation and synchrotron radiation X-ray tomography[J]. Materials, 2019, 12(15):2461.
[39] ZHU Q, WANG C J, QIN H Y, et al. Effect of the grain size on the microtensile deformation and fracture behaviors of a nickel-based superalloy via EBSD and in situ synchrotron radiation X-ray tomography[J]. Materials Characterization, 2019, 156:109875.
[40] ZHU Q, ZHANG L F, WANG C J, et al. Multi-dimensional revealing the influence mechanism of the δ phase on the tensile fracture behavior of a nickel-based superalloy on the mesoscopic scale[J]. Materials, 2022, 15(2):610.
[41] LINK T, ZABLER S, EPISHIN A, et al. Synchrotron tomography of porosity in single-crystal nickel-base superalloys[J]. Materials Science and Engineering:A, 2006, 425(1-2):47-54.
[42] BAI Y S, YANG S L, ZHU M Q, et al. Study on microstructure and fatigue properties of FGH96 nickel-based superalloy[J]. Materials, 2021, 14(21):6298.
[43] TAN Y G, BULL D J, JIANG R, et al. Data rich imaging approaches assessing fatigue crack initiation and early propagation in a DS superalloy at room temperature[J]. Materials Science and Engineering:A, 2021, 805:140592.
[44] LIU L, HUSSEINI N S, TORBET C J, et al. In situ synchrotron X-ray imaging of high-cycle fatigue crack propagation in single-crystal nickel-base alloys[J]. Acta Materialia, 2011, 59(13):5103-5115.
[45] LIU Y H, KANG M D, WU Y, et al. Effects of microporosity and precipitates on the cracking behavior in polycrystalline superalloy Inconel 718[J]. Materials Characterization, 2017, 132:175-186.
[46] LIU Y H, KANG M D, WU Y, et al. Crack formation and microstructure-sensitive propagation in low cycle fatigue of a polycrystalline nickel-based superalloy with different heat treatments[J]. International Journal of Fatigue, 2018, 108:79-89.
[47] MAUREL V, HELFEN L, N'GUYEN F, et al. Three-dimensional investigation of thermal barrier coatings by synchrotron-radiation computed laminography[J]. Scripta Materialia, 2012, 66(7):471-474.
[48] SOULIGNAC R, MAUREL V, RÉMY L, et al. Cohesive zone modelling of thermal barrier coatings interfacial properties based on three-dimensional observations and mechanical testing[J]. Surface & Coatings Technology, 2013, 237:95-104.
[49] EPISHIN A, CAMIN B, HANSEN L, et al. Synchrotron sub-μ X-ray tomography of kirkendall porosity in a diffusion couple of nickel-base superalloy and nickel after annealing at 1250℃[J]. Advanced Engineering Materials, 2021, 23(4):2001220.
[50] KHOSHKHOU D, MOSTAFAVI M, REINHARD C, et al. Three-dimensional displacement mapping of diffused Pt thermal barrier coatings via synchrotron X-ray computed tomography and digital volume correlation[J]. Scripta Materialia, 2016, 115:100-103.
[51] REIMERS W, PYZALLA A R, SCHREYER A, 等. 中子和同步辐射在工程材料科学中的应用[M]. 姜晓明, 丁洪, 孙冬柏, 译. 北京:科学出版社, 2014:129-134. REIMERS W, PYZALLA A, SCHREYER A, et al. Neutrons and synchrotron radiation in engineering materials science[M]. JIANG X M, DING H, SUN D B, translated. Beijing:Science Press, 2014:129-134(in Chinese).
[52] JENSEN M V R S, DYE D, JAMES K E, et al. Residual stresses in a welded superalloy disc:Characterization using synchrotron diffraction and numerical process modeling[J]. Metallurgical and Materials Transactions A, 2002, 33(9):2921-2931.
[53] JUN T S, ZHANG S Y, GOLSHAN M, et al. Synchrotron energy-dispersive X-ray diffraction analysis of residual strains around friction welds between dissimilar aluminium and nickel alloys[J]. Materials Science Forum, 2008, 571-572:407-412.
[54] LI C, JACQUES S D M, CHEN Y, et al. Precise strain profile measurement as a function of depth in thermal barrier coatings using high energy synchrotron X-rays[J]. Scripta Materialia, 2016, 113:122-126.
[55] KNIPE K, MANERO A, SIDDIQUI S F, et al. Strain response of thermal barrier coatings captured under extreme engine environments through synchrotron X-ray diffraction[J]. Nature Communications, 2014, 5:4559.
[56] SUZUKI K, TANAKA K, AKINIWA Y. Estimation of spalling stress in thermal barrier coatings using hard synchrotron X-rays[J]. JSME International Journal Series A, 2004, 47(3):318-323.
[57] SUZUKI K, SHOBU T. Internal stress in EB-PVD thermal barrier coatings under thermal cycle[J]. Journal of the Society of Materials Science, 2009, 58(7):562-567.
[58] SUZUKI K, TANAKA K, SHOBU T. Residual stress in EB-PVD thermal barrier coatings[M]//Materials Science Forum. Stafa:Trans Tech Publications Ltd., 2006:879-884.
[59] LI C, JACQUES S D M, CHEN Y, et al. A synchrotron X-ray diffraction deconvolution method for the measurement of residual stress in thermal barrier coatings as a function of depth[J]. Journal of Applied Crystallography, 2016, 49(Pt 6):1904-1911.
[60] LI C, ZHANG X, CHEN Y, et al. Understanding the residual stress distribution through the thickness of atmosphere plasma sprayed (APS) thermal barrier coatings (TBCs) by high energy synchrotron XRD:Digital image correlation (DIC) and image based modelling[J]. Acta Materialia, 2017, 132:1-12.
[61] THORNTON J, COOKSON D, PESCOTT E. The measurement of strains within the bulk of aged and as-sprayed thermal barrier coatings using synchrotron radiation[J]. Surface & Coatings Technology, 1999, 120-121:96-102.
[62] THORNTON J, SLATER S, ALMER J. The measurement of residual strains within thermal barrier coatings using high-energy X-ray diffraction[J]. Journal of the American Ceramic Society, 2005, 88(10):2817-2825.
[63] ABA-PEREA P E, PIRLING T, PREUSS M. In-situ residual stress analysis during annealing treatments using neutron diffraction in combination with a novel furnace design[J]. Materials & Design, 2016, 110:925-931.
[64] ZHANG S Y, VORSTER W, JUN T S, et al. High energy white beam x-ray diffraction studies of residual strains in engineering components[J]. AIP Conference Proceedings, 2008, 1045(1):41-50.
[65] WAHLMANN B, GALGON F, STARK A, et al. Growth and coarsening kinetics of gamma prime precipitates in CMSX-4 under simulated additive manufacturing conditions[J]. Acta Materialia, 2019, 180:84-96.
[66] AMINFOROUGHI B, DEGENER S, RICHTER J, et al. A novel approach to robustly determine residual stress in additively manufactured microstructures using synchrotron radiation[J]. Advanced Engineering Materials, 2021, 23(11):2100184.
[67] SONG X, XIE M, HOFMANN F, et al. Residual stresses and microstructure in powder bed direct laser deposition (PB DLD) samples[J]. International Journal of Material Forming, 2015, 8(2):245-254.
[68] MATUSZEWSKI K, MATYSIAK H, JAROSZEWICZ J, et al. Influence of Bridgman process conditions on microstructure and porosity of single crystal Ni-base superalloy CMSX-4[J]. International Journal of Cast Metals Research, 2014, 27(6):329-335.
[69] BIERMANN H, UNGÁR T, VON GROSSMANN B, et al. Microbeam synchrotron radiation diffraction study of local strains in a monocrystalline nickel-base turbine blade[J]. Materials Science and Engineering:A, 2004, 387-389:918-922.
[70] UNGÁR T, BIERMANN H, VON GROSSMANN B. Synchrotron microbeam diffraction study of the microstructure and the chemical composition in a monocrystalline Ni-base turbine blade after a thermomechanical mission test[J]. Structural Chemistry, 2003, 14(1):49-56.
[71] WESTPHAL E R, BROWN A D, QUINTANA E C, et al. Visible emission spectra of thermographic phosphors under x-ray excitation[J]. Measurement Science and Technology, 2021, 32(9):094008.
[72] 王芳卫, 严启伟, 梁天骄, 等. 中子散射与散裂中子源[J]. 物理, 2005, 34(10):731-738. WANG F W, YAN Q W, LIANG T J, et al. Neutron scattering and spallation neutron sources[J]. Physics, 2005, 34(10):731-738(in Chinese).
[73] 叶春堂. 我国的热中子散射工作现况和展望[J]. 核技术, 1993, 16(8):505-510. YE C T. Present condition and prospects of thermal neutron scattering work in China[J]. Nuclear Techniques, 1993, 16(8):505-510(in Chinese).
[74] 刘蕴韬, 陈东风. 中国先进研究堆中子散射科学平台介绍[J]. 物理, 2013, 42(8):534-543. LIU Y T, CHEN D F. The neutron scattering platform of China's advanced research reactor[J]. Physics, 2013, 42(8):534-543(in Chinese).
[75] 陈东风, 勾成, 叶春堂. 中国先进研究堆(CARR)上的中子散射工程[J]. 核技术, 2005, 28(2):127-129. CHEN D F, GOU C, YE C T. Neutron scattering project on CARR[J]. Nuclear Techniques, 2005, 28(2):127-129(in Chinese).
[76] 张昌盛, 彭梅, 孙光爱. 中子散射:理解工程材料的必要工具[J]. 物理, 2015, 44(3):169-178. ZHANG C S, PENG M, SUN G A. Neutron scattering:A necessary tool for understanding engineering materials[J]. Physics, 2015, 44(3):169-178(in Chinese).
[77] FAISAL N H, AHMED R, PRATHURU A K, et al. Measuring residual strain and stress in thermal spray coatings using neutron diffractometers[J]. Experimental Mechanics, 2022, 62(3):369-392.
[78] 李峻宏, 高建波, 李际周, 等. 中子衍射残余应力无损测量技术及应用[J]. 中国材料进展, 2009, 28(12):10-14, 25. LI J H, GAO J B, LI J Z, et al. Technology and application of nondestructive residual stress measurement by neutron diffraction[J]. Materials China, 2009, 28(12):10-14, 25(in Chinese).
[79] 孙凯, 李天富, 陈东风. 中子散射及相关技术的发展与应用[J]. 原子能科学技术, 2020, 54(S1):35-46. SUN K, LI T F, CHEN D F. Development and application of neutron scattering and related technique[J]. Atomic Energy Science and Technology, 2020, 54(S1):35-46(in Chinese).
[80] ZRNÍK J, STRUNZ P, VRCHOVINSKY V, et al. Creep deformation and microstructural examination of a prior thermally exposed nickel base superalloy[J]. Key Engineering Materials, 2004, 274-276:925-930.
[81] ZRNÍK J, STRUNZ P, VRCHOVINSKY V, et al. Degradation of creep properties in a long-term thermally exposed nickel base superalloy[J]. Materials Science and Engineering:A, 2004, 387-389:728-733.
[82] MUKHERJI D, STRUNZ P, DEL GENOVESE D, et al. Investigation of microstructural changes in INCONEL 706 at high temperatures by in-situ small-angle neutron scattering[J]. Metallurgical and Materials Transactions A, 2003, 34A(12):2781-2792.
[83] ZICKLER G A, SCHNITZER R, RADIS R, et al. Microstructure and mechanical properties of the superalloy ATI Allvac® 718PlusTM[J]. Materials Science and Engineering:A, 2009, 523(1-2):295-303.
[84] ROGANTE M, LEBEDEV V T. Small angle neutron scattering comparative investigation of Inconel 738 samples submitted to different ageing treatments[J]. Materials & Design, 2008, 29(5):1060-1065.
[85] STRUNZ P, PETRENEC M, POLÁK J, et al. Formation and dissolution of γ' precipitates in IN792 superalloy at elevated temperatures[J]. Metals, 2016, 6(2):37.
[86] RATEL N, BRUNO G, DEMÉ B. In situ small-angle neutron scattering investigation of the γ' precipitation and growth in the nickel-based single-crystal alloy SC16[J]. Journal of Physics:Condensed Matter, 2005, 17(43):7061-7075.
[87] GILLES R, MUKHERJI D, STRUNZ P, et al. Investigation of γ' precipitates in nickel-base single-crystal superalloy (SC 16) by SANS[J]. Physica B:Condensed Matter, 1997, 234-236:1008-1010.
[88] STRUNZ P, SCHUMACHER G, CHEN W, et al. SANS examination of precipitate microstructure in the creep-exposed single-crystal Ni-base superalloy SC16[J]. Applied Physics A, 2002, 74(S1):S1083-S1085.
[89] STRUNZ P, SCHUMACHER G, KLINGELHÖFFER H, et al. In situ observation of morphological changes of γ' precipitates in a pre-deformed single-crystal Ni-base superalloy[J]. Journal of Applied Crystallography, 2011, 44(5):935-944.
[90] COLLINS D M, HEENAN R K, STONE H J. Characterization of gamma prime (γ') precipitates in a polycrystalline nickel-base superalloy using small-angle neutron scattering[J]. Metallurgical and Materials Transactions A, 2011, 42A(1):49-59.
[91] BRASS A M, CHÊNE J. SANS analysis of γ' precipitation in the γ matrix of Ni base superalloy single crystals[J]. Scripta Materialia, 2000, 43(10):913-918.
[92] SOLÍS C, MUNKE J, BERGNER M, et al. In situ characterization at elevated temperatures of a new Ni-based superalloy VDM-780 premium[J]. Metallurgical and Materials Transactions A, 2018, 49A(9):4373-4381.
[93] STRUNZ P, MUKHERJI D, GILLES R, et al. Determination of γ' solution temperature in Re-rich Ni-base superalloy by small-angle neutron scattering[J]. Journal of Applied Crystallography, 2001, 34:541-548.
[94] WU E D, SUN G A, CHEN B, et al. A neutron diffraction study of lattice distortion, mismatch and misorientation in a single-crystal superalloy after different heat treatments[J]. Acta Materialia, 2013, 61(7):2308-2319.
[95] HUANG S Y, AN K, GAO Y, et al. Determination of γ/γ' lattice misfit in Ni-based single-crystal superalloys at high temperatures by neutron diffraction[J]. Metallurgical and Materials Transactions A, 2018, 49A(3):740-751.
[96] HUANG E W, LIAW P K, PORCAR L, et al. Study of nanoprecipitates in a nickel-based superalloy using small-angle neutron scattering and transmission electron microscopy[J]. Applied Physics Letters, 2008, 93(16):161904.
[97] ZRNÍK J, STRUNZ P, MALDINI M, et al. Small-angle neutron scattering investigation of γ' precipitate morphology evolution in creep-exposed single-crystal Ni-base superalloy CMSX-4[J]. Journal of Physics:Condensed Matter, 2008, 20(10):104261.
[98] STRUNZ P, ZRNÍK J, EPISHIN A, et al. Microstructure of creep-exposed single crystal nickel base superalloy CSMX4[J]. Journal of Physics:Conference Series, 2010, 247:012039.
[99] PETRENEC M, STRUNZ P, GASSER U, et al. Nanostructure characterization of IN738LC superalloy fatigued at high temperature[C]//NANOCON 2013. Brno:[s.n.], 2013:16-18.
[100] HUANG E W, CLAUSEN B, WANG Y D, et al. A neutron-diffraction study of the low-cycle fatigue behavior of HASTELLOY® C-22HSTM alloy[J]. International Journal of Fatigue, 2007, 29(9-11):1812-1819.
[101] HUANG E W, BARABASH R I, CLAUSEN B, et al. Fatigue-induced reversible/irreversible structural-transformations in a Ni-based superalloy[J]. International Journal of Plasticity, 2010, 26(8):1124-1137.
[102] GRANT B M B, FRANCIS E M, DA FONSECA Q J, et al. Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy[J]. Acta Materialia, 2012, 60(19):6829-6841.
[103] KVMMEL F, KIRCHMAYER A, SOLÍS C, et al. Deformation mechanisms in Ni-based superalloys at room and elevated temperatures studied by in situ neutron diffraction and electron microscopy[J]. Metals, 2021, 11(5):719.
[104] BENSON M L, LIAW P K, SALEH T A, et al. Deformation-induced phase development in a cobalt-based superalloy during monotonic and cyclic deformation[J]. Physica B:Condensed Matter, 2006, 385-386:523-525.
[105] STARON P, CIHAK U, CLEMENS H, et al. Diffraction-based residual stress analysis applied to problems in the aircraft industry[J]. Advanced Engineering Materials, 2007, 9(8):627-638.
[106] QIN H L, BI Z N, YU H Y, et al. Assessment of the stress-oriented precipitation hardening designed by interior residual stress during ageing in IN718 superalloy[J]. Materials Science and Engineering:A, 2018, 728:183-195.
[107] QIN H L, BI Z N, ZHANG R Y, et al. Influence of residual stresses on ageing precipitation behavior of alloy 718[M]//The Minerals, Metals & Materials Series. Cham:Springer International Publishing, 2018:579-593.
[108] LAWITZKI R, HASSAN S, KARGE L, et al. Differentiation of γ'- and γ''- precipitates in Inconel 718 by a complementary study with small-angle neutron scattering and analytical microscopy[J]. Acta Materialia, 2019, 163:28-39.
[109] ZHANG R Y, QIN H L, BI Z N, et al. Evolution of lattice spacing of gamma double prime precipitates during aging of polycrystalline Ni-base superalloys:An in situ investigation[J]. Metallurgical and Materials Transactions A, 2020, 51(2):574-585.
[110] ZHANG R Y, BI Z N, QIN H L, et al. Constrained lattice misfit measurement in bulk inconel 718 using high resolution neutron diffraction[M]//The Minerals, Metals & Materials Series. Cham:Springer International Publishing, 2018:439-448.
[111] ILAVSKY J, STALICK J K. Phase composition and its changes during annealing of plasma-sprayed YSZ[J]. Surface & Coatings Technology, 2000, 127(2-3):120-129.
[112] VOGT T, HUNTER B A, THORNTON J. Structural evolution of thermal-sprayed yttria-stabilized ZrO2 thermal barrier coatings with annealing-A neutron diffraction study[J]. Journal of the American Ceramic Society, 2001, 84(3):678-680.
[113] ILAVSKY J, WALLACE J, STALICK J K. Thermal spray yttria-stabilized zirconia phase changes during annealing[J]. Journal of Thermal Spray Technology, 2001, 10(3):497-501.
[114] SAVIN A, CRAUS M L, TURCHENKO V, et al. Complementary methods for evaluation of yttria stabilized zirconia coatings used as thermal barrier coating[J]. Strojniški Vestnik-Journal of Mechanical Engineering, 2018, 64(11):706-715.
[115] FENG Y, DONG T S, LI G L, et al. High temperature oxidation resistance and TGO growth mechanism of laser remelted thermal barrier coatings[J]. Journal of Alloys and Compounds, 2020, 828:154266.
[116] KULKARNI A, GOLAND A, HERMAN H, et al. Advanced neutron and X-ray techniques for insights into the microstructure of EB-PVD thermal barrier coatings[J]. Materials Science and Engineering:A, 2006, 426(1-2):43-52.
[117] SARUHAN B, RYUKHTIN V, KELM K. Correlation of thermal conductivity changes with anisotropic nano-pores of EB-PVD deposited FYSZ-coatings[J]. Surface & Coatings Technology, 2011, 205(23-24):5369-5378.
[118] RENTERIA A F, SARUHAN B, SCHULZ U, et al. Effect of morphology on thermal conductivity of EB-PVD PYSZ TBCs[J]. Surface & Coatings Technology, 2006, 201(6):2611-2620.
[119] RENTERIA A F, SARUHAN B. Effect of ageing on microstructure changes in EB-PVD manufactured standard PYSZ top coat of thermal barrier coatings[J]. Journal of the European Ceramic Society, 2006, 26(12):2249-2255.
[120] WANG Z, KULKARNI A, DESHPANDE S, et al. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings[J]. Acta Materialia, 2003, 51(18):5319-5334.
[121] ALLEN A J, ILAVSKY J, LONG G G, et al. Microstructural characterization of yttria-stabilized zirconia plasma-sprayed deposits using multiple small-angle neutron scattering[J]. Acta Materialia, 2001, 49(9):1661-1675.
[122] SARUHAN B, OCHROMBEL R, RYUKHTIN V, et al. Analysis of anisotropic void system in electron-beam physical-vapour-deposited (EB-PVD) thermal-barrier coatings[J]. Advanced Engineering Materials, 2009, 11(6):488-494.
[123] RYUKHTIN V, SARUHAN B, OCHROMBEL R, et al. Studying of PYSZ and FYSZ turbine blade coatings by small-angle neutron scattering[J]. Journal of Physics Conference Series, 2012, 340(1):012097.
[124] RENTERIA A F, SARUHAN B, ILAVSKY J, et al. Application of USAXS analysis and non-interacting approximation to determine the influence of process parameters and ageing on the thermal conductivity of electron-beam physical vapor deposited thermal barrier coatings[J]. Surface & Coatings Technology, 2007, 201(8):4781-4788.
[125] STRUNZ P, SCHUMACHER G, VAßEN R, et al. In situ small-angle neutron scattering study of La2Zr2O7 and SrZrO3 ceramics for thermal barrier coatings[J]. Scripta Materialia, 2006, 55(6):545-548.
[126] KULKARNI A A, GOLAND A, HERMAN H, et al. Advanced microstructural characterization of plasma-sprayed zirconia coatings over extended length scales[J]. Journal of Thermal Spray Technology, 2005, 14(2):239-250.
[127] TEJERO-MARTIN D, BAI M W, MATA J, et al. Evolution of porosity in suspension thermal sprayed YSZ thermal barrier coatings through neutron scattering and image analysis techniques[J]. Journal of the European Ceramic Society, 2021, 41(12):6035-6048.
[128] PETORAK C, ILAVSKY J, WANG H, et al. Microstructural evolution of 7 wt.% Y2O3-ZrO2 thermal barrier coatings due to stress relaxation at elevated temperatures and the concomitant changes in thermal conductivity[J]. Surface & Coatings Technology, 2010, 205(1):57-65.
[129] ALLEN A J, BERK N F, ILAVSKY J, et al. Multiple small-angle neutron scattering studies of anisotropic materials[J]. Applied Physics A, 2002, 74(S1):937-939.
[130] 韩松柏, 刘蕴韬, 陈东风. 中国先进研究堆中子散射大科学装置[J]. 科学通报, 2015, 60(22):2068-2078. HAN S B, LIU Y T, CHEN D F. Large-scale scientific facility at China Advanced Research Reactor for neutron scattering[J]. Chinese Science Bulletin, 2015, 60(22):2068-2078(in Chinese).
[131] PREUSS M, WITHERS P J, PANG J W L, et al. Inertia welding nickel-based superalloy:Part II[J]. Metallurgical and Materials Transactions A, 2002, 33(10):3227-3234.
[132] WANG L, PREUSS M, WITHERS P J, et al. Energy-input-based finite-element process modeling of inertia welding[J]. Metallurgical and Materials Transactions B, 2005, 36(4):513-523.
[133] SMITH M, LEVESQUE J B, BICHLER L, et al. Residual stress analysis in linear friction welded in-service Inconel 718 superalloy via neutron diffraction and contour method approaches[J]. Materials Science and Engineering:A, 2017, 691:168-179.
[134] PANG J W L, PREUSS M, WITHERS P J, et al. Effects of tooling on the residual stress distribution in an inertia weld[J]. Materials Science and Engineering:A, 2003, 356(1-2):405-413.
[135] IQBAL N, ROLPH J, MOAT R, et al. A comparison of residual stress development in inertia friction welded fine grain and coarse grain nickel-base superalloy[J]. Metallurgical and Materials Transactions A, 2011, 42A(13):4056-4063.
[136] STONE H J, ROBERTS S M, REED R C. A process model for the distortion induced by the electron-beam welding of a nickel-based superalloy[J]. Metallurgical and Materials Transactions A, 2000, 31(9):2261-2273.
[137] KORSUNSKY A M, REGINO G M, NOWELL D, et al. Inertia friction welds between nickel superalloy components:Analysis of residual stress by eigenstrain distributions[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(2):159-170.
[138] CIHAK U, STARON P, CLEMENS H, et al. Characterization of residual stresses in turbine discs by neutron and high-energy X-ray diffraction and comparison to finite element modeling[J]. Materials Science and Engineering:A, 2006, 437(1):75-82.
[139] CIHAK U, STARON P, MARKETZ W, et al. Residual stresses in forged IN718 turbine discs[J]. Zeitschrift für Metallkunde, 2004, 95(7):663-667.
[140] ABA-PEREA P E, WITHERS P J, PIRLING T, et al. In situ study of the stress relaxation during aging of nickel-base superalloy forgings[J]. Metallurgical and Materials Transactions A, 2019, 50A(8):3555-3565.
[141] SONG R H, QIN H L, LI D F, et al. An experimental and numerical study of quenching-induced residual stresses under the effect of dynamic strain aging in an IN718 superalloy disc[J]. Journal of Engineering Materials and Technology, 2022, 144(1):011002.
[142] MO F J, WU E D, ZHANG C S, et al. Correlation between the microstructural defects and residual stress in a single crystal nickel-based superalloy during different creep stages[J]. Metals and Materials International, 2018, 24(5):1002-1011.
[143] LU Y, MA S, MAJUMDAR B S. Elastic microstrains during tension and creep of superalloys:Results from in situ neutron diffraction[C]//Superalloys 2008(Eleventh International Symposium). Pittsburgh:The Minerals, Metals & Materials Society (TMS), 2008:553-562.
[144] GIBMEIER J, BACK H C, MUTTER M, et al. Study of stability of microstructure and residual strain after thermal loading of plasma sprayed YSZ by through surface neutron scanning[J]. Physica B:Condensed Matter, 2018, 551:69-78.
[145] SCARDI P, LEONI M, BERTINI L, et al. Strain gradients in plasma-sprayed zirconia thermal barrier coatings[J]. Surface & Coatings Technology, 1998, 108-109:93-98.
[146] OWOSENI T, BAI M, HUSSAIN T, et al. Neutron diffraction residual stress measurements in suspension HVOF sprayed Al2O3 and YSZ coatings[C]//International Thermal Spray Conference. Materials Park:American Society for Metals (ASM International), 2018:490-495.
[147] STARON P, CIHAK U, STOCKINGER M, et al. Characterization of residual stresses in IN 718 turbine discs by neutron diffraction and finite element modeling[J]. Journal of Neutron Research, 2007, 15(3):185-192.
[148] KARADGE M, GRANT B, WITHERS P J, et al. Thermal relaxation of residual stresses in nickel-based superalloy inertia friction welds[J]. Metallurgical and Materials Transactions A, 2011, 42A(8):2301-2311.