流体力学与飞行力学

一种并联两级入轨飞行器纵向分离方案的数值研究

  • 王粤 ,
  • 汪运鹏 ,
  • 王春 ,
  • 姜宗林
展开
  • 1.中国科学院 力学研究所 高温气体动力学国家重点实验室,北京 100190
    2.中国科学院大学 工程科学学院,北京 100049

收稿日期: 2022-06-16

  修回日期: 2022-06-16

  录用日期: 2022-06-28

  网络出版日期: 2022-07-08

基金资助

国家自然科学基金(11672357)

Numerical study of longitudinal stage separation for parallel-staged two-stage-to-orbit vehicle

  • Yue WANG ,
  • Yunpeng WANG ,
  • Chun WANG ,
  • Zonglin JIANG
Expand
  • 1.State Key Laboratory of High-Temperature Gas Dynamics,Institute of Mechanics,Chinese Academy of Sciences,Beijing 100190,China
    2.School of Engineering Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

Received date: 2022-06-16

  Revised date: 2022-06-16

  Accepted date: 2022-06-28

  Online published: 2022-07-08

Supported by

National Natural Science Foundation of China(11672357)

摘要

两级入轨(TSTO)飞行器或将成为下一代天地运输往返系统,其具有低成本、高效率和多用途等优点,但是两级分离成功与否将直接决定入轨任务的成败。目前的并联式TSTO飞行器多采用横向级间分离,该方法会在两级间产生复杂强气动干扰而直接增加了分离风险,所以探索一种可以避免或减弱两级强气动干扰的新分离方式是十分必要的。提出并着重分析了一种并联式TSTO纵向级间分离(LSS)方案,即轨道级在助推级背面沿着飞行方向分离,对其进行了动态分离过程的数值研究。针对新分离方案,设计了一种由宽速域乘波体和可重复使用空天飞机分别作为助推级和轨道级的TSTO组合飞行器,在高超声速条件下,采用重叠动网格技术分析了不同来流攻角(AOA)下的纵向分离流动机理、非定常壁面压力分布及气动特性变化规律。结果表明:TSTO纵向分离过程中仅存在VI型激波干扰和激波汇聚等简单的弱干扰类型,两级间无明显的激波反射或激波边界层干扰;非定常压力分布特性表明助推级前缘激波是轨道级受力变化的主要影响因素;纵向分离过程中,助推级受到的气动干扰力载荷小于轨道级。此外,不同来流攻角下,两级气动干扰流场结构具有相似性,并给出了实现安全纵向分离的攻角条件。

本文引用格式

王粤 , 汪运鹏 , 王春 , 姜宗林 . 一种并联两级入轨飞行器纵向分离方案的数值研究[J]. 航空学报, 2023 , 44(11) : 127634 -127634 . DOI: 10.7527/S1000-6893.2022.27634

Abstract

Two Stage to Orbit (TSTO) vehicle may become an example of next-generation launch technology for its efficiency and reusability, but whether the two stages can be safely separated or not will directly determine the success or failure of the orbit mission. At present, parallel-staged TSTO vehicle mostly adopts a transverse stage separation scheme, in which strong aerodynamic interference is introduced between stages and directly increase the separation risk. Hence, it is necessary to explore a scheme to reduce or even avoid the strong aerodynamic interference during separation. In this study, a Longitudinal Stage Separation (LSS) scheme for the parallel-staged TSTO model, in which, the orbiter moves along the upper surface of the booster, is proposed and analyzed in detail by investigating the dynamic separation process numerically. A TSTO concept comprising a wide-speed waverider and a reusable space plane, as booster and orbiter respectively, was designed to investigate LSS by numerical simulation with the overset grid method. The flow mechanism, unsteady wall pressure distribution, as well as aerodynamic characteristics of LSS at different Angles of Attack (AOA) under hypersonic condition, are studied. The results show that the aerodynamic interference during LSS is simple and weak, which is only associated with type VI shock/shock interaction and the convergence of shock waves. No shock reflections or shock/boundary-layer interaction occurs between stages. The variations of pressure distribution show that the leading edge shock of the booster is the main factor affecting the aerodynamics of the orbiter. Moreover, the interference load on the booster is weaker than that of the orbiter. The interference flow structure of TSTO is similar among different AOA cases, and the appropriate AOA condition of safe LSS for the current TSTO model is presented.

参考文献

1 左光, 艾邦成. 先进空间运输系统气动设计综述[J]. 航空学报202142(2): 624077.
  ZUO G, AI B C. Aerodynamic design of advanced space transportation system: Review[J]. Acta Aeronautica et Astronautica Sinica202142(2): 624077 (in Chinese).
2 朱雄峰, 程洪玮, 刘阳, 等. 世界航天发射运输的发展趋势[J]. 科技导报202139(11): 46-58.
  ZHU X F, CHENG H W, LIU Y, et al. Review and development perspective of the space launch and transportation system[J]. Science & Technology Review202139(11): 46-58 (in Chinese).
3 阮建刚, 何国强, 吕翔. RBCC—RKT两级入轨飞行器飞行轨迹优化方法[J]. 航空学报201435(5): 1284-1291.
  RUAN J G, HE G Q, LYU X. Trajectory optimization method in two-stage-to-orbit RBCC—RKT launch vehicle[J]. Acta Aeronautica et Astronautica Sinica201435(5): 1284-1291 (in Chinese).
4 包为民, 汪小卫. 航班化航天运输系统发展展望[J]. 宇航总体技术20215(3): 1-6.
  BAO W M, WANG X W. Prospect of airline-flight-mode aerospace transportation system[J]. Astronautical Systems Engineering Technology20215(3): 1-6 (in Chinese).
5 赵文胜. 组合循环发动机科学研究技术路线的优化[J]. 科技导报202139(17): 82-90.
  ZHAO W S. Research on R & D technical route of combined cycle engine[J]. Science & Technology Review202139(17): 82-90 (in Chinese).
6 ZHOU J X, XIAO Y T, LIU K, et al. Preliminary analysis for a two-stage-to-orbit reusable launch vehicle[C]∥ 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015.
7 王粤, 汪运鹏, 薛晓鹏, 等. TSTO马赫7安全级间分离问题的数值研究[J]. 力学学报202254(2): 526-542.
  WANG Y, WANG Y P, XUE X P, et al. Numerical investigation on safe stage separation problem of a TSTO model at Mach 7[J]. Chinese Journal of Theoretical and Applied Mechanics202254(2): 526-542 (in Chinese).
8 蒋海军, 阎超. 两级入轨飞行器激波间干扰绕流的数值模拟[C]∥第十三届全国激波与激波管学术会议论文集, 2008: 143-148.
  JIANG H J, YAN C. Numerical simulation of interaction flow between shock waves of two stage to orbit vehcle [C]∥The 13th National Conference on Shock Wave and Shock Tube, 2008: 143-148 (in Chinese).
9 LIU Y, QIAN Z S, LU W B,et al. Numerical investigation on the safe stage-separation mode for a TSTO vehicle[J]. Aerospace Science and Technology2020107: 106349.
10 DECKER J P.Aerodynamic interference effects caused by parallel-staged simple aerodynamic configurations at Mach numbers of 3 and 6:NASA-TN-D-5379[R]. Washington, D.C.: NASA, 1969.
11 BORDELON W, FROST A, REED D. Stage separation wind tunnel tests of a generic TSTO launch vehicle[C]∥21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003.
12 OZAWA H, HANAI K, KITAMURA K, et al. Experimental investigation of shear-layer/body interactions in TSTO at hypersonic speeds[C]∥46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
13 CHENG J M, CHEN R Q, QIU R F,et al. Aerothermodynamic study of Two-Stage-To-Orbit system composed of wide-speed-range vehicle and rocket[J]. Acta Astronautica2020183: 330-345.
14 CVRLJE T, BREITSAMTER C, LASCHKA B. Numerical simulation of the lateral aerodynamics of an orbital stage at stage separation flow conditions[J]. Aerospace Science and Technology20004(3): 157-171.
15 CVRLJE T, BREITSAMTER C, WEISH?UPL C, et al. Euler and navier-stokes simulations of two-stage hypersonic vehicle longitudinal motions[J]. Journal of Spacecraft and Rockets200037(2): 242-251.
16 贾子安, 张陈安, 王柯穆, 等. 乘波布局高超声速飞行器纵向静稳定特性分析[J]. 中国科学: 技术科学201444(10): 1114-1122.
  JIA Z A, ZHANG C A, WANG K M,et al. Longitudinal static stability analysis of hypersonic waveriders[J]. Scientia Sinica (Technologica)201444(10): 1114-1122 (in Chinese).
17 汪运鹏, 王粤, 姜宗林. 一种乘波基体构造方法、助推级飞行器以及机翼控制系统: CN114180100B[P]. 2022-04-29.
  WANG Y P, WANG Y, JIANG Z L. Wave-rider matrix construction method, booster aircraft and wing control system: CN114180100B[P]. 2022-04-29 (in Chinese).
18 汪运鹏, 王粤, 姜宗林. 一种宽速域飞行器乘波体构型设计方法: CN114186351A[P]. 2022-04-15.
  WANG Y P, WANG Y, JIANG Z L. Wide-speed-range aircraft waverider configuration design method: CN114186351A[P]. 2022-04-15 (in Chinese).
19 汪运鹏, 王粤, 姜宗林. 一种具有气动组合结构并联可重复使用的两级入轨飞行器: CN114162349B[P]. 2022-03-11.
  WANG Y P, WANG Y, JIANG Z L. Reusable two-stage injection aircraft with pneumatic combined structure connected in parallel: CN114162349B[P]. 2022-03-11 (in Chinese).
20 SUTHERLAND W.The viscosity of gases and molecular force[J].Philosophical Magazine197736:507-531.
21 MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal199432(8): 1598-1605.
22 CHAKRAVARTHY S. A unified-grid finite volume formulation for computational fluid dynamics[J]. International Journal for Numerical Methods in Fluids199931(1): 309-323.
23 LUO H, BAUM J, LOHNER R. Extension of HLLC scheme for flows at all speeds[C]∥16th AIAA Computational Fluid Dynamics Conference.Reston: AIAA, 2003.
24 TORO E F, SPRUCE M, SPEARES W. Restoration of the contact surface in the HLL-Riemann solver[J]. Shock Waves19944(1): 25-34.
25 EDWARDS J R. An implicit multigrid algorithm for computing hypersonic, chemically reacting viscous flows[J]. Journal of Computational Physics1996123(1): 84-95.
26 TIAN S L, FU J W, CHEN J T. A numerical method for multi-body separation with collisions[J]. Aerospace Science and Technology2021109: 106426.
27 ZAGHI S, DI MASCIO A, BROGLIA R, et al. Application of dynamic overlapping grids to the simulation of the flow around a fully-appended submarine[J]. Mathematics and Computers in Simulation2015116: 75-88.
28 SCHüLEIN E. Skin friction and heat flux measurements in shock/boundary layer interaction flows[J]. AIAA Journal200644(8): 1732-1741.
29 HEIM E R. CFD wing/ pylon/ finned store mutual interference wind tunnel experiment: AEDC-TSR-91-P4[R]. Arnold AFB: Arnold Engineering Development Center, 1991.
30 SNYDER D, KOUTSAVDIS E, ANTTONEN J. Transonic store separation using unstructured CFD with dynamic meshing[C]∥33rd AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2003.
31 沈清. TSTO级间分离气动问题与试验模型—大会特邀报告[C]∥第十二届全国实验流体力学学术会议, 2021.
  SHEN Q. Aerodynamic problems and test model for stage separation of TSTO-invited lecture[C]∥The 12th National Conference on Experimental Fluid Mechanics, 2021 (in Chinese).
32 WEINGERTNER S. SAENGER - the reference concept of the German hypersonics technology program[C]∥5th International Aerospace Planes and Hypersonics Technologies Conference. Reston: AIAA, 1993.
文章导航

/