旋涡与物面的相互作用广泛存在于各类飞行器的绕流中,旋涡影响飞行器表面的压力分布,引起其气动特性的改变。而表面压力分布同样反映飞行器绕流中复杂涡系的空间流动特征,结合迎角、侧滑角等来流参数,可以判断飞行器受力状态和运动趋势。本文以平面点涡和“镜像涡”理论为基础,通过风洞实验研究基于物面压力信息的空间涡识别方法。研究结果表明:通过物面压力分布曲线可以辨识流向旋涡的空间位置和强度特征,空间流场测量与基于物面压力信息的旋涡识别结果的关联性分析验证了该方法的有效性。
The interaction between vortices and the object surface exists in various situations. The vortex affect the pressure distribution of the surface and aerodynamic performances of aircraft. The pressure distribution of the aircraft can reflect the spatial flow characteristics of the vortices around the aircraft. Combined with the angle of attack, side slip angle and other flow parameters, the force state and motion trend of the aircraft can be judged. This paper, Vortex signature identification methods in surface pressure distributions is established according to the theory of point vortex and “mirror vortex”. The results show that the surface pressure distribution curve can characterize the spatial position (projection position and height of the vortex core distance surface) and intensity of the vortex. The correlation analysis between the spatial flow field measurement and the vortex identification result in surface pressure distributions verifies the effectiveness of the proposed method.
[1] 高浩. 飞机大迎角飞行品质研究的进展[J]. 飞行力学, 1999(01):1-7.
GAO H. The Advance of Aircraft Flying Qualities Re-searching at High Angle of Attack [ J ]. Flight Dynamic, 1999 ( 01 ) : 1-7.
[2] Herbst W B. Dynamics of air combat[J]. Journal of Air-craft, 1982,20(7):594-598.
[3] Lang J D, Francis M S. Unsteady Aerody-namics and Dynamic Aircraft Maneuvera-bility,[J]. Unsteady Aerodynamics & Dy-namic Aircraft Maneuverability, 1985.
[4] S. B K, F. F. Helicopter Noise Prediction: The Current Status and Future Direction[J]. Aca-demic Press, 1994,170(1).
[5] Lowson M V. Progress towards quieter civil helicop-ters[J]. The Aeronautical Journal, 1992,96(956).
[6] Yu Y H. Rotor blade–vortex interaction noise[J]. Pro-gress in Aerospace Sciences, 2000,36(2).
[7] 任丁丁, 王俊琦, 杨柳, 等. 侧风条件下短舱进气道地面涡数值模拟[J]. 航空科学技术, 2021,32(02):50-55.
Ren Dingding,Wang Junqi,Yang Liu,et al.Numerical simulation of ground vortex of nacelle inlet under crosswind conditions[J].Aeronautical Science & Technology,2021,32(02):50-55.
[8] Lee B H K. Vertical tail buffeting of fighter aircraft[J]. Progress in Aerospace Sciences, 2000,36(3).
[9] 赵子杰, 高超, 张正科. 涡破裂诱导的垂尾抖振气动弹性分析[J]. 航空学报, 2016,37(02):491-503.
ZHAO Z J, GAO C, ZHANG Z K. Aeroelastic analysis of vertical tail buffeting induced by vortex break-dowm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2):491-503.
[10] Hemsch M J . Tactical missile aerodynamics : general topics[M]. American Institute of Aeronautics and Astro-nautics, 1992.
[11] 李岸一, 王旭, 刘文法, 等. 鸭翼涡与边条涡对前掠翼布局的增升研究[J]. 空军工程大学学报·自然科学版, 2010(01):19-22.
LI A Y, WANG X, LIU W F, et al. Study on lift-enhancement of canard votex and strake vortex to con-figuration with forward-swepting [J]. Journal of Air Force Engineering University(Natural Science Edition), 2010, 11(1): 19-22, 58.(in Chinese)
[12] Wang Q T, Cheng K M, Gu Y S, et al. Con-tinuous con-trol of asymmetric forebody vor-tices in a bi-stable state[J]. Physics of Fluids, 2018,30(2):24102.
[13] 顾蕴松. 大攻角前体非对称流动的控制技术[D]. 南京航空航天大学, 2005.
GU Y S. Control of forebody flow asymmetry in high-angle flow [D]. Nanjing: Nanjing University of Aero-nautics and Astronautics, 2005. (in Chinese)
[14] Rudnik R, Von H G, Wild J. The European High Lift Programme II: Eccomas, 2006[C].
[15] Marks C R, Sondergaard R. Vortex Signature Identifica-tion in Surface Pressure Distribu-tions Using Crease De-tection Techniques[J]. AIAA Journal, 2017,55(6):1783-1791.
[16] 陈尹, 顾蕴松, 孙之骏, 等. 基于翼面压力的飞行器气动力感知技术与自由飞验证[J]. 航空学报, 2021,42(3):124138.
CHEN Y, GU Y S, SUN Z J, et al. Aerodynamic percep-tion from distributed pressure and free flight test[J] . Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124138(in Chinese) . dio: 10.7527/S1000-6893. 2020. 24138.
[17] 顾蕴松, 史楠星, 孙之骏, 等. 一种基于飞行状态感知的智能飞行器及飞行方法: 2020.05.15.
GU Y S, SHI N X, SUN Z J, et al. An Intelligent Air-craft and Flight Method Based on Flight State Perception: 2020.05.15.
[18] Wittmer K S, Devenport W J. Effects of Per-pendicular Blade-Vortex Interaction, Part 1: Turbulence Structure and Development[J]. AIAA journal, 1999,37(7):805-812.
[19] Wittmer K S, Devenport W J, Glegg S A L. Effects of Perpendicular Blade-Vortex Inter-action, Part 2: Parame-ter Study[J]. AIAA journal, 1999,37(7):813-817.
[20] Booth E. Surface pressure measurement during low speed two-dimensional blade-vortex interaction: 10th Aeroacoustics Con-ference, 1986[C].
[21] SCHRECK S, HELIN H. Unsteady vortex dynamics and surface pressure topologies on a pitching wing[M]//American Institute of Aeronautics and Astro-nautics, 1993.
[22] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学学报, 2020,38(03):413-431, 478.
LIU C Q. Liutex-third generation of vortex definition and identification methods [J]. Acta Aerodynamica Sini-ca, 2020, 38(3): 405-431, 478. doi : 10.7638/kqdlxxb-2020.0015.
[23] 孙之骏, 顾蕴松, 赵航. 流向涡-面干扰流动特征[J]. 空气动力学学报, 2020,038(3):470-478.
Dio: 10.7638/kqdlxxb-2019. 0026
SUN Z J, GU Y S, ZHAO H. Experimental investiga-tion of streamwise vortex-surface interacation[J]. Acta Aerodynamica Sinica, 2020, 38(3): 470-478.
[24] 章旷, 代钦. 地面效应作用下翼尖涡特性的PIV实验研究[J]. 空气动力学学报, 2015, 33(3): 367-374, 405.
ZHANG K, DAICHIN. Experiment study on the tip vortices of a wing close to a flat and a wavy surface us-ing PIV[J]. Acta Aerodynamica Sinica, 2015, 33(3): 367-374, 405. (in Chinese)
[25] Bodstein G , George A R , Hui C Y . Vortex/surface interaction[J]. Aiaa Journal, 1993.
[26] Greenwell D I , Wood N J . Determination of vortex burst location on delta wings from surface pressure measurements[J]. AIAA Journal, 2015, 30(11):2736-2739.