材料工程与机械制造

基于PSO⁃BiLSTM神经网络的机身筒段应力预测

  • 杨超 ,
  • 张开富
展开
  • 1.西北工业大学 机电学院,西安  710072
    2.中国航空工业集团公司北京长城航空测控技术研究所,北京  101111
.E-mail: yangc@avic-bmc.com

收稿日期: 2022-01-24

  修回日期: 2022-02-18

  录用日期: 2022-04-01

  网络出版日期: 2022-07-08

基金资助

国家级项目

Stress prediction of fuselage tube section based on PSO⁃BiLSTM neural network

  • Chao YANG ,
  • Kaifu ZHANG
Expand
  • 1.School of Mechanical Engineering,Northwestern Polytechnical University,Xi’an  710072,China
    2.AVIC Beijing Chang Cheng Aeronautic Measurement and Control Technology Research Institute,Beijing  101111,China
E-mail: yangc@avic-bmc.com

Received date: 2022-01-24

  Revised date: 2022-02-18

  Accepted date: 2022-04-01

  Online published: 2022-07-08

Supported by

National Level Project

摘要

飞机机身部件在装配对接前,通常需要使用形状控制工装调节机身筒段形状以达到对接标准,为避免出现控形过程中筒段局部应力过大损坏机身的情况,需实时监测机身筒段应力变化,为此提出基于粒子群优化算法和双向长短期记忆 (PSO-BiLSTM) 神经网络的应力预测方法。通过机身筒段控形历史数据对应力预测模型进行训练和测试,采用粒子群优化算法迭代优化神经网络超参数,实验结果表明,PSO-BiLSTM神经网络凭借长记忆细胞和高模型容量优势在处理序列式数据方面具有明显优势,应力预测损失在0.3%的均方根误差范围内收敛。与竞争模型循环神经网络(RNN)、标准长短期记忆 (LSTM) 神经网络和双向长短期记忆 (BiLSTM) 神经网络相比,PSO-BiLSTM神经网络模型不仅预测结果更准确,训练效率也明显提高。

本文引用格式

杨超 , 张开富 . 基于PSO⁃BiLSTM神经网络的机身筒段应力预测[J]. 航空学报, 2023 , 44(7) : 426991 -426991 . DOI: 10.7527/S1000-6893.2022.26991

Abstract

Before aircraft fuselage components are assembled and docked, shape control tools are usually used to adjust the shape of the fuselage tube section to meet the docking standard. In order to avoid damage to the fuselage due to excessive local stress during the shape control process, it is necessary to monitor changes in stress. This research proposes a stress prediction method, which combines Particle Swarm Optimization and Bidirectional Long Short-Term Memory (PSO-BiLSTM) neural network. In this paper, the model input data is converted into sliding window sequential data with extremely high data correlation, and the stress data set is trained and tested. The experimental results show that the PSO-BiLSTM neural network has obvious advantages in processing sequential data. This is because the PSO-BiLSTM network has long memory cells and high model capacity. Stress prediction loss converges within 0.3% Root Mean Square Error (RMSE) error range. Compared with the competitive model RNN network, the standard Long Short-Term Memory (LSTM) network and the Bidirectional Long Short-Term Memory (BiLSTM) neural network, the PSO-BiLSTM model not only predicts more accurately, but also significantly improves training efficiency.

参考文献

1 荆涛, 田锡天. 基于蒙特卡洛-自适应差分进化算法的飞机容差分配多目标优化方法[J]. 航空学报202243(3): 425278.
  JING T, TIAN X T. Multi-objective optimization method for aircraft tolerance allocation based on Monte Carlo-adaptive differential evolution algorithm[J]. Acta Aeronautica et Astronautica Sinica202243(3): 425278 (in Chinese).
2 唐成顺,孙丹,唐威,等 .基于LSTM循环神经网络的汽轮机转子表面应力预测模型[J].中国电机工程学报202141(2): 451-460.
  TANG C S, SUN D, TANG W, et al. A turbine rotor surface stress prediction model based on LSTM recurrent neural network[J]. Proceedings of the CSEE202141(2): 451-460 (in Chinese).
3 袁泓磊,李尚平,李向辉,等 .基于深度学习模型的甘蔗转运车节点应力预测[J].装备制造技术2020(4): 1-4.
  YUAN H L, LI S P, LI X H, et al. Stress prediction of key nodes of sugarcane transport vehicle based on deep learning[J].Equipment Manufacturing Technology2020(4): 1-4 (in Chinese).
4 GULGEC N, TAKAC M, PAKZAD S. Innovative sensing by using deep learning framework[C]∥Dynamics of Civil Structures, Volume 2 Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017. 2017: 293-300.
5 HUANG R J, WEI C J, WANG B H, et al. Well performance prediction based on Long Short-Term Memory (LSTM) neural network[J]. Journal of Petroleum Science and Engineering2022208(Part D): 109686.
6 MA Y H, DU X, SUN X M. Adaptive modification of the turbofan engine nonlinear model based on LSTM neural networks and hybrid optimization method[J]. Chinese Journal of Aeronautics2021, 1-23.Avilable from:.
7 HAJIAGHAYI M, VAHEDI E. Code failure prediction and pattern extraction using LSTM networks[C]∥ 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications (Big Data Service). Newark: Institute for Electrical and Electronic Engineers, 2019: 55-62.
8 ZHANG Y. Aeroengine fault prediction based on bidirectional LSTM neural network[C]∥ 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). Piscataway, NJ: IEEE Press, 2020: 317-320.
9 PAN D W, SONG Z, NIE L Q, et al. Satellite telemetry data anomaly detection using Bi-LSTM prediction based model[C]∥ 2020 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Piscataway, NJ: IEEE Press, 2020: 1-6.
10 车畅畅, 王华伟, 倪晓梅, 等. 基于1D-CNN和Bi-LSTM的航空发动机剩余寿命预测[J]. 机械工程学报202157(14): 304-312.
  CHE C C, WANG H W, NI X M, et al. Residual life prediction of aeroengine based on 1D-CNN and Bi-LSTM[J]. Journal of Mechanical Engineering202157(14): 304-312 (in Chinese).
11 BIAN C, HE H L, YANG S K. Stacked bidirectional long short-term memory networks for state-of-charge estimation of lithium-ion batteries[J]. Energy2020191: 116538.
12 LIU J W, LI Q, CHEN W R, et al. Remaining useful life prediction of PEMFC based on long short-term memory recurrent neural networks[J]. International Journal of Hydrogen Energy201944(11): 5470-5480.
13 QUE Z Q, LIU Y Y, GUO C, et al. Real-time anomaly detection for flight testing using AutoEncoder and LSTM[C]∥ 2019 International Conference on Field-Programmable Technology (ICFPT). Piscataway, NJ: IEEE Press, 2019: 379-382.
14 LI D Z, YAN M J, MIAO Z W, et al. LSTM neural network based tensile stress prediction of rubber streching[C]∥ 2020 IEEE International Conference on Networking, Sensing and Control (ICNSC). Piscataway, NJ: IEEE Press, 2020: 1-5.
15 SUN Q, TANG Z, GAO J P, et al. Short-term ship motion attitude prediction based on LSTM and GPR[J]. Applied Ocean Research2022118: 102927.
16 YAO W Y, HUANG P, JIA Z X. Multidimensional LSTM networks to predict wind speed [C]∥ 2018 37th Chinese Control Conference (CCC). Piscataway, NJ: IEEE Press, 2018: 7493-7497.
17 DU Y, CUI N X, LI H X, et al. The vehicle’s velocity prediction methods based on RNN and LSTM neural network[C]∥ 2020 Chinese Control and Decision Conference (CCDC). Piscataway, NJ: IEEE Press, 2020: 99-102.
18 MA J Y, LUO D C, LIAO X P, et al. Tool wear mechanism and prediction in milling TC18 titanium alloy using deep learning[J]. Measurement2020173(1): 108554.
19 CUI Z Y, KE R M, PU Z Y, et al. Stacked bidirectional and unidirectional LSTM recurrent neural network for forecasting network-wide traffic state with missing values [J]. Transportation Research Part C: Emerging Technologies2020118: 102674.
20 SIAMI-NAMINI S, TAVAKOLI N, NAMIN A S. The performance of LSTM and BiLSTM in forecasting time series[C]∥ 2019 IEEE International Conference on Big Data (Big Data). Piscataway, NJ: IEEE Press, 2019: 3285-3292.
21 KENNEDY J, EBERHART R. Particle swarm optimization [C]∥ Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ: IEEE Press, 1995: 1942-1948.
22 GREFF K, SRIVASTAVA R K, KOUTNIK J, et al. LSTM: a search space odyssey[J]. IEEE Transactions on Neural Networks and Learning Systems201728(10): 2222 -2232.
文章导航

/