论文

基于无源性与势场法的四旋翼避障与位置控制

  • 王羿 ,
  • 叶辉 ,
  • 杨晓飞
展开
  • 江苏科技大学 电子信息学院,镇江 212003
.E-mail: yehuicc@just.edu.cn

收稿日期: 2022-05-02

  修回日期: 2022-05-23

  录用日期: 2022-06-16

  网络出版日期: 2022-06-24

基金资助

国家自然科学基金(61903163);江苏省研究生科研创新计划(KYCX22_3823)

A position control and obstacle avoidance method for quadrotor via approach based on passivity and artificial potential filed

  • Yi WANG ,
  • Hui YE ,
  • Xiaofei YANG
Expand
  • School of Electronics and Information,Jiangsu University of Science and Technology,Zhenjiang 212003,China

Received date: 2022-05-02

  Revised date: 2022-05-23

  Accepted date: 2022-06-16

  Online published: 2022-06-24

Supported by

National Natural Science Foundation of China(61903163);Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX22_3823)

摘要

针对四旋翼无人机位置控制与障碍避让问题,提出了一种无源控制理论和人工势场法相结合的控制策略。将整个控制系统分解为外环位置控制器和内环姿态控制器两部分。在外环控制器设计中,采用级联系统的无源性理论,并通过选取适当的势场函数作为存储函数,解决定点跟踪过程中的避障问题。在内环控制器设计中,采用四元数描述姿态动力学方程,并基于Lyapunov函数设计内环控制律。在此基础上,进一步构造无源位置子系统和姿态子系统的互联结构,保证了整个闭环系统的稳定性。最后,通过仿真结果验证了所提出控制策略的有效性与控制性能。

本文引用格式

王羿 , 叶辉 , 杨晓飞 . 基于无源性与势场法的四旋翼避障与位置控制[J]. 航空学报, 2023 , 44(S1) : 727492 -727492 . DOI: 10.7527/S1000-6893.2022.27492

Abstract

A control strategy combining the passive control theory and the artificial potential field method is proposed for the quadrotor UAV to solve the problem of position control and obstacle avoidance. This method divides the whole control system into two parts: the outer loop position controller and the inner loop attitude controller. In the design of the outer loop controller, the passivity theory of the cascade system is adopted, and the appropriate potential field function is selected as the storage function to solve the problem of obstacle avoidance in the process of fixed-point tracking. In the design of inner loop controller, quaternion is used to describe the attitude dynamics of the quadrotor UAV, and the inner loop controller is designed based on the Lyapunov function. Furthermore, the interconnection structure of the passive position subsystem and the attitude subsystem is constructed to ensure the stability of the whole closed-loop system. Finally, the simulation results verify the effectiveness and control performance of the proposed control strategy.

参考文献

1 呼忠权, 华长春, 张柳柳. 具有时变扰动的四旋翼无人机有限时间预定性能控制[J]. 控制与决策202237(12): 3215-3222.
  HU Z Q, HUA C C, ZHANG L L. Finite time prescribed performance control of quadrotor UAVs with time varying disturbances[J]. Control and Decision202237(12): 3215-3222 (in Chinese).
2 曹远宁. 四旋翼无人机的运动目标识别与跟踪[D]. 沈阳: 东北大学, 2015.
  CAO Y N. Moving target recognition and tracking for quadrotor UAV[D]. Shenyang: Northeastern University, 2015 (in Chinese).
3 HOU Y Q, LIANG X L, HE L L, et al. Time-coordinated control for unmanned aerial vehicle swarm cooperative attack on ground-moving target[J]. IEEE Access20197: 106931-106940.
4 RAMEZANI DOORAKI A, LEE D J. An innovative bio-inspired flight controller for quad-rotor drones: Quad-rotor drone learning to fly using reinforcement learning[J]. Robotics and Autonomous Systems2021135: 103671.
5 马良, 穆朝絮, 杨万扣, 等. 四旋翼无人机目标跟踪系统设计[J]. 控制工程201522(6): 1076-1081.
  MA L, MU C X, YANG W K, et al. Design of target tracking system for quad-rotor UAV[J]. Control Engineering of China201522(6): 1076-1081 (in Chinese).
6 MEHMOOD Y, ASLAM J, ULLAH N, et al. Adaptive robust trajectory tracking control of multiple quad-rotor UAVs with parametric uncertainties and disturbances[J]. Sensors202121(7): 2401.
7 KHANKALANTARY S, BADRI P, MOHAMMADKHANI H. Designing a hierarchical model-predictive controller for tracking an unknown ground moving target using a 6-DOF quad-rotor[J]. International Journal of Dynamics and Control20219(3): 985-999.
8 GUO J, YAN G F, LIN Z Y. Local control strategy for moving-target-enclosing under dynamically changing network topology[J]. Systems and Control Letters201059(10): 654-661.
9 PENG X H, GUO K X, LI X, et al. Cooperative moving-target enclosing control for multiple nonholonomic vehicles using feedback linearization approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems202151(8): 4929-4935.
10 KANG B, MIAO Y, LIU F, et al. A second-order sliding mode controller of quad-rotor UAV based on PID sliding mode surface with unbalanced load[J].Journal of Systems Science and Complexity202134(2): 520-536.
11 ZHANG M, BORJA P, ORTEGA R, et al. PID passivity-based control of port-Hamiltonian systems[J]. IEEE Transactions on Automatic Control201863(4): 1032-1044.
12 CAO Z B, ZHAO J. Passivity-based event-triggered control for a class of switched nonlinear systems[J]. ISA Transactions2022125: 50-59.
13 WANG J L, ZHANG X X, WU H N, et al. Finite-time passivity and synchronization of coupled reaction-diffusion neural networks with multiple weights[J]. IEEE Transactions on Cybernetics201949(9): 3385-3397.
14 GUERRERO M E, MERCADO D A, LOZANO R, et al. Passivity based control for a quadrotor UAV transporting a cable-suspended payload with minimum swing[C]∥2015 54th IEEE Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2016: 6718-6723.
15 HA C S, ZUO Z Y, CHOI F B, et al. Passivity-based adaptive backstepping control of quadrotor-type UAVs[J]. Robotics and Autonomous Systems201462(9): 1305-1315.
16 WANG X D, FEI Z Y, YU J Y, et al. Passivity-based event-triggered fault tolerant control for VTOL with actuator failure and parameter uncertainties[J]. International Journal of Systems Science201950(4): 817-828.
17 CHEN S F, YANG Z H, LIU Z T, et al. An improved artificial potential field based path planning algorithm for unmanned aerial vehicle in dynamic environments[C]∥2017 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). Piscataway: IEEE Press, 2018: 591-596.
18 张宏宏, 甘旭升, 毛亿, 等. 无人机避障算法综述[J]. 航空兵器202128(5): 53-63.
  ZHANG H H, GAN X S, MAO Y, et al. Review of UAV obstacle avoidance algorithms[J]. Aero Weaponry202128(5): 53-63 (in Chinese).
19 LI K Y, LU Y G, ZHANG Y C. Dynamic obstacle avoidance path planning of UAV Based on improved APF[C]∥2020 5th International Conference on Communication, Image and Signal Processing (CCISP). Piscataway: IEEE Press, 2020: 159-163.
20 YAO Q F, ZHENG Z Y, QI L, et al. Path planning method with improved artificial potential field—a reinforcement learning perspective[J]. IEEE Access20208: 135513-135523.
21 MANCINI M, BLOISE N, CAPELLO E, et al. Sliding mode control techniques and artificial potential field for dynamic collision avoidance in rendezvous maneuvers[J]. IEEE Control Systems Letters20204(2): 313-318.
22 LI Q, YUAN J P, ZHANG B, et al. Artificial potential field based robust adaptive control for spacecraft rendezvous and docking under motion constraint[J]. ISA Transactions201995: 173-184.
23 张菁, 何友, 彭应宁, 等. 基于神经网络和人工势场的协同博弈路径规划[J]. 航空学报201940(3): 322493.
  ZHANG J, HE Y, PENG Y N, et al. Neural network and artificial potential field based cooperative and adversarial path planning[J]. Acta Aeronautica et Astronautica Sinica201940(3): 322493 (in Chinese).
24 CONG Y R, FENG Z G, SONG H W, et al. Containment control of singular heterogeneous multi-agent systems[J]. Journal of the Franklin Institute2018355(11): 4629-4643.
25 KHALIL H K. Nonlinear control[M]. Boston: Pearson, 2015.
文章导航

/