拟合精度约束下航发叶片在机测量采样策略
收稿日期: 2022-03-14
修回日期: 2022-04-06
录用日期: 2022-05-08
网络出版日期: 2022-06-17
基金资助
国家自然科学基金(52175435)
Sampling strategy for on-machine measurement of aero-engine blade under constraint of fitting accuracy
Received date: 2022-03-14
Revised date: 2022-04-06
Accepted date: 2022-05-08
Online published: 2022-06-17
Supported by
National Natural Science Foundation of China(52175435)
测量点数量是影响航空发动机叶片复杂曲面在机测量效率的关键因素,为了在满足拟合精度要求的情况下最少化测量点数量,提出了一种考虑拟合精度的叶片在机测量采样方法。首先,根据叶身曲面测量的评价特点,将评价曲面的拟合精度降维成评价一组截面轮廓的拟合精度,建立了度量不同拟合曲线之间误差关系的模型。接着,使用放缩变换从误差关系模型中剥离出拟合误差,并推导出拟合误差的上界模型。进一步以拟合误差上界满足给定拟合允差为约束,依据逼近误差原理迭代计算出最少测量点数量。最后,选择离心式叶轮为对象,在保证在机测量结果拟合精度要求的前提下,验证了此方法能够减少测量点数量以提升测量效率,这为优化曲面类零件的在机测量工艺提供了一种新方法。
万能 , 庄其鑫 , 郭彦亨 , 常智勇 , 王道 . 拟合精度约束下航发叶片在机测量采样策略[J]. 航空学报, 2023 , 44(7) : 427151 -427151 . DOI: 10.7527/S1000-6893.2022.27151
The number of measurement points is a key factor impacting the on-machine measurement efficiency of complex surfaces on aero-engine blades. To minimize the number of measurement points while meeting the fitting accuracy requirements, a sampling approach for blade on-machine measurement that considers the fitting accuracy is proposed. Firstly, in terms of the evaluation characteristics of surfaces inspection on blade body, the evaluation of fitting accuracy of surfaces is simplified to the evaluation of fitting accuracy for a set of section profile curves, and a model to assess the error relationship between different fitting curves is established. Then, the fitting error is separated from the on-machine measurement results by using the scaling transformation, and the upper bound model of fitting error is established. Furthermore, with the constraint that the upper bound of the fitting error satisfies the given fitting tolerance, the minimum number of measurement points is calculated iteratively based on the approximation error principle. Finally, taking the centrifugal impeller as the verification object, the number of measurement points can be reduced, and the measurement efficiency can be improved by the proposed method while ensuring the fitting accuracy of the on-machine measurement results, which provides a new approach to optimize the on-machine measurement process for the curved surface parts.
1 | WOZNIAK A, JANKOWSKI M. Variable speed compensation method of errors of probes for CNC machine tools[J]. Precision Engineering, 2017, 49: 316-321. |
2 | CALVO R, AMATO R D, GóMEZ E, et al. A comparative experimental study of an alternative CMM error model under least-squares and minimum zone fittings for industrial measuring[J]. Procedia Engineering, 2015, 132: 780-787. |
3 | RENISHAW. SprintTM 技术[EB/OL]. (2001-10-30)[2022-03-10]. . |
4 | 卜昆, 张现东, 任帅军, 等. CMM采样点对涡轮叶片特征参数检测精度的影响[J]. 西北工业大学学报, 2019, 37(4): 767-773. |
BU K, ZHANG X D, RENG S J, et al. Research on influence of CMM sampling points on detection of feature parameters for turbine blade[J]. Journal of Northwestern Polytechnical University, 2019, 37(4): 767-773 (in Chinese). | |
5 | ZHAO D Z, WANG W H, ZHOU J H, et al. Measurement point sampling method for inspection of parts with free-form surfaces[J]. Advances in Mechanical Engineering, 2018, 10(11): 1-12. |
6 | 高源,蔺小军,张俊岐,等. 基于CMM的薄壁叶片型线测量点分区域采样规划方法[J]. 航空制造技术, 2020, 63(7): 14-20. |
GAO Y, LIN X J, ZHANG J Q, et al. A region-division method of measurement point sampling for thin-walled blade sections based on CMM[J]. Aeronautical Manufacturing Technology, 2020, 63(7): 14-20 (in Chinese). | |
7 | 于红英, 刘文涛, 赵广亮. YP02型叶片测量仪软件系统开发的关键技术[J]. 机械工程学报, 2008, 44(4): 239-245. |
YU H Y, LIU W T, ZHAO G L, et al. Key techniques of YP02 blade measuring machine software system[J]. Journal of Mechanical Engineering, 2008, 44(4): 239-245 (in Chinese). | |
8 | 王进. 叶片表面测量点曲线拟合及轮廓度误差评定[J]. 航空制造技术, 2014, 451(7): 88-90. |
WANG J. Measurement points curve fitting and contour error evaluation for blade surface[J]. Aeronautical Manufacturing Technology, 2014, 451(7): 88-90 (in Chinese). | |
9 | 赵世田, 赵东标, 付莹莹. 测量数据点的高精度B样条曲线拟合算法[J]. 计算机集成制造系统, 2010, 16(8): 1708-1713. |
ZHAO S T, ZHAO D B, FU Y Y. High precision B-spline curve fitting algorithm of measure points[J]. Computer Integrated Manufacturing Systems, 2010, 16(8): 1708-1713 (in Chinese). | |
10 | SARKAR B, MENQ C H. Smooth-surface approximation and reverse engineering[J]. Computer-Aided Dsign. 1991, 23(9): 623-628. |
11 | LUCHE T, MORKEN K. A data-reduction strategy for splines with applications to the approximation of functions and data[J]. Journal of Numerical Analysis, 1988(8): 185-208. |
12 | LIU J, ZHAO J, YANG X, et al. A reconstruction algorithm for blade surface based on less measured points[J]. International Journal of Aerospace Engineering, 2015, 2015: 431824. |
13 | 侯斐茹, 万能, 常智勇, 等. 轮廓度约束下近净成形叶片余量优化方法[J]. 航空学报, 2017, 38(7): 421069. |
HOU F R, WAN N, CHANG Z Y, et al. An allowance optimization method for near-net shape blade under profile tolerance constraints[J]. Acta Aeronautics et Atronautica Sinica, 2017, 38(7): 421069 (in Chinese). | |
14 | 吴石, 李荣义, 刘献礼, 等. 基于自适应采样的曲面加工误差在机测量方法[J]. 仪器仪表学报, 2016, 37(1): 83-90. |
WU S, LI R Y, LIU X L, et al. On-machine measurement method of processing error based on the mould surface adaptive sampling[J]. Chinese Journal of Scientific Instrument, 2016, 37(1): 83-90 (in Chinese). | |
15 | 任利娟, 张广鹏, 王元, 等. 基于压缩控制点的B样条曲线重构算法[J]. 西安理工大学学报, 2019, 35(2): 163-171. |
REN L J, ZHANG G P, WANG Y, et al. B-spline curve reconstruction algorithm based on compressed control points[J]. Journal of Xi'an University of Technology, 2019, 35(2): 163-171 (in Chinese). | |
16 | 何改云, 黄鑫, 郭龙真. 自由曲面轮廓度误差评定及不确定度分析[J]. 电子测量与仪器学报, 2017, 31(3): 395-401. |
HE G Y, HUANG X, GUO L Z. Evaluation of free-form surface profile error and analysis of uncertainty[J]. Journal of Electronic Measurement and Instrumentation, 2017, 31(3): 395-401 (in Chinese). | |
17 | 王耀东. 放缩,反演和障碍问题[J]. 数学进展, 1995, 24(1): 44-50. |
WANG Y D. The dilation and the inversion for the obstacle problem[J]. Advances in Mathematics, 1995, 24(1): 44-50 (in Chinese). | |
18 | ACEVEDO R, GóMEZ C, LóPEZ-RODRíGUEZ B. Fully-discrete finite element approximation for a family of degenerate parabolic problems[J]. Computers and Mathematics with Applications, 2020, 96: 155-177. |
19 | MANSOUR G. A developed algorithm for simulation of blades to reduce the measurement points and time on coordinate measuring machine(CMM)[J]. Measurement, 2014,54: 51-57. |
20 | 张庆礼, 王晓梅, 殷绍唐, 等. 高阶高斯积分节点的高精度数值计算[J]. 中国工程科学, 2008(2): 35-40. |
ZHANG Q L, WANG X M, YIN S T, et al. High-precision numerical computation of high-degree gauss-quadrature nodes[J]. Strategic Study of CAE, 2008(2): 35-40 (in Chinese). | |
21 | 庄其鑫, 莫蓉, 万能, 等. 基于可行图的五轴在机测量探针轴向优化方法[J]. 航空学报, 2020, 41(5): 423403. |
ZHUANG Q X, MO R, WAN N, et al. Stylus orientation optimization method in five-axis on-machine measurement based on feasible graph[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 423403 (in Chinese). | |
22 | 吕北生, 程云勇. 轮廓度公差约束的叶片模型配准方法[J]. 计算机集成制造系统, 2016, 22(8): 1831-1836. |
LV B S, CHENG Y Y. Profile tolerance constrained registration method for blade model[J]. Computer Integrated Manufacturing Systems, 2016, 22(8): 1831-1836 (in Chinese). | |
23 | 胡述龙, 张定华, 张莹, 等. 带公差约束的数字样板叶型检测方法[J]. 航空学报, 2013, 34(10): 2411-2418. |
HU S L, ZHANG D H, ZHANG Y, et al. Inspection method of blade shape based on digitized template with design tolerance constraints[J]. Acta Aeronautics et Astronautica Sinica, 2013, 34(10): 2411-2418 (in Chinese). | |
24 | 孙彬, 杜虎兵, 王建华, 等. 航发叶片型面激光点云三维重构误差分析[J]. 光子学报, 2018, 47(5): 1-9. |
SUN B, DU H B, WANG J H, et al. Analysis of aero-engine blade surface laser point cloud 3D reconstruction error[J]. Acta Photonica Sinica, 2018, 47(5): 1-9 (in Chinese). |
/
〈 |
|
〉 |