热颤振地面模拟试验技术
收稿日期: 2022-04-18
修回日期: 2022-05-08
录用日期: 2022-06-02
网络出版日期: 2022-06-08
基金资助
国家级项目
Thermal flutter ground simulation test
Received date: 2022-04-18
Revised date: 2022-05-08
Accepted date: 2022-06-02
Online published: 2022-06-08
Supported by
National Level Project
地面颤振模拟试验是一项以真实飞行器结构作为试验对象,并利用激振器模拟非定常气动力的颤振验证试验技术。本文通过在地面颤振模拟试验的基础上引入热环境模拟设备,进一步研究热颤振地面模拟试验技术。建立了综合考虑多工况的气动插值点优化方法,然后利用Kriging代理模型构建了适用于时变温度场中结构的非定常气动力降阶模型,同时设计了气动加热环境地面模拟及热环境下结构的激励与响应测试方案,最终基于钛合金机翼模型搭建了热颤振地面模拟试验系统,并对时变颤振边界进行跟踪测试。试验结果表明,在激振力控制器的设计控制频带内试验结果与仿真结果吻合较好,但鲁棒控制器较窄的控制带宽限制了热颤振地面模拟试验的适用范围。
陈浩宇 , 王彬文 , 宋巧治 , 李晓东 . 热颤振地面模拟试验技术[J]. 航空学报, 2023 , 44(8) : 227295 -227295 . DOI: 10.7527/S1000-6893.2022.27295
Ground flutter simulation test is a flutter verification experiment technology for real aircraft structures, which uses exciters to simulate unsteady aerodynamic force. In this paper, the thermal environment simulation scheme is used in this technology to establish the thermal flutter ground simulation system. An aerodynamic interpolation point optimization algorithm is proposed based on the weighting of modal shapes. An unsteady aerodynamic reduced-order model for time-varying structure is constructed by using the Kriging surrogate model. After the simulation scheme of aerodynamic thermal environment and the measurement method of high-temperature structure’s response signal are designed, the experiment system based on the titanium alloy wing model is completed. Finally, time-varying thermal flutter boundary tracking and testing is carried out. The testing results show that the testing accuracy is acceptable when the controller is within the preset frequency range, but the narrow control bandwidth of robust controller limits the application of the thermal flutter ground simulation test.
1 | CULLER A J, MCNAMARA J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11): 2393-2406. |
2 | YANG C, LI G S, WAN Z Q. Aerothermal-aeroelastic two-way coupling method for hypersonic curved panel flutter[J]. Science China Technological Sciences, 2012, 55(3): 831-840. |
3 | LAMORTE N, FRIEDMANN P P. Aerothermoelastic and aeroelastic studies of hypersonic vehicles using CFD[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013. |
4 | JI C, LI F, LIU Z Q. Development and testing of hypersonic flutter test capability[J]. AIAA Journal, 2019, 57(7): 2989-3002. |
5 | 茹科夫斯基中央空气流体动力研究院.李志译. 气动弹性[M]. 上海: 上海交通大学出版社, 2020: 383-384. |
TsAGI.LI Z translater. Aeroelastic theory and practice[M]. Shanghai: Shanghai Jiao Tong University Press, 2020: 383-384 (in Chinese). | |
6 | KEARNS J P. Flutter simulation[J]. APL Technical Digest, 1962. |
7 | 潘树祥, 齐丕骞. 地面模拟热颤振试验研究[J]. 强度与环境, 1984, 11(2): 8-12. |
PAN S X, QI P Q. Experimental study on simulated ground thermal flutter[J]. Structure & Environment Engineering, 1984, 11(2): 8-12 (in Chinese). | |
8 | SMYSLOV V, DIJKSTRA K, KARKLE P. The experience in ground vibration tests of flexible flying vehicles using PRODERA equipment and some additional tasks[C]∥European Conference for Aerospace Sciences (EUCASS), 2005. |
9 | KARKLE P, SMYSLOV V. Electromechanical simulation method in dynamic aeroelasticity usage experience and future trends[C]∥International Forum on Aeroelasticity and Structural Dynamics, 2007: 1-10. |
10 | ZENG J, KINGSBURY D, RITZ E, et al. GVT-based ground flutter test without wind tunnel[C]∥52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011. |
11 | 许云涛, 吴志刚, 杨超. 地面颤振模拟试验中的非定常气动力模拟[J]. 航空学报, 2012, 33(11): 1947-1957. |
XU Y T, WU Z G, YANG C. Simulation of the unsteady aerodynamic forces for ground flutter simulation test[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1947-1957 (in Chinese). | |
12 | WANG B W, FAN X L. Ground flutter simulation test based on reduced order modeling of aerodynamics by CFD/CSD coupling method[J]. International Journal of Applied Mechanics, 2019, 11(1): 1950008. |
13 | WU Z G, CHU L F, YUAN R Z, et al. Studies on aeroservoelasticity semi-physical simulation test for missiles[J]. Science China Technological Sciences, 2012, 55(9): 2482-2488. |
14 | WU Z G, MA C J, YANG C. New approach to the ground flutter simulation test[J]. Journal of Aircraft, 2016, 53(5): 1578-1580. |
15 | SONG Q Z, YANG Z C, WANG W. Robust control of exciting force for vibration control system with multi-exciters[J]. Science China Technological Sciences, 2013, 56(10): 2516-2524. |
16 | 宋巧治, 王彬文, 李晓东. 基于机翼颤振风洞试验模型的地面颤振模拟试验验证[J]. 工程与试验, 2021, 61(2): 3-7. |
SONG Q Z, WANG B W, LI X D. Ground flutter simulation test validation based on wing flutter wind tunnel test model[J]. Engineering & Test, 2021, 61(2): 3-7 (in Chinese). | |
17 | 陈浩宇, 王彬文, 宋巧治, 等. 高超声速飞行器热颤振研究现状与展望[J]. 航空工程进展, 2022, 13(1): 19-27. |
CHEN H Y, WANG B W, SONG Q Z, et al. Research progress and prospect of thermal flutter of hypersonic vehicles[J]. Advances in Aeronautical Science and Engineering, 2022, 13(1): 19-27 (in Chinese). | |
18 | MCNAMARA J J. Aeroelastic and aerothermoelastic behavior of two and three dimensional surfaces in hypersonic flow[D]. Michigan: University of Michigan, 2005. |
19 | Software MSC. MSC NASTRAN: Aeroelastic analysis user’s guide[EB/OL]. Santa Ana: MSC Software Corporation, 2012: 32-40. |
20 | 管德. 非定常空气动力计算[M]. 北京: 北京航空航天大学出版社, 1991: 142-157. |
GUAN D. Unsteady aerodynamic calculation[M]. Beijing: Beihang University Press, 1991: 142-157 (in Chinese). | |
21 | 刘俊. 基于代理模型的高效气动优化设计方法及应用[D]. 西安: 西北工业大学, 2015: 26-28. |
LIU J. Efficient surrogate-based optimization method and its application in aerodynamic design[D]. Xi’an: Northwestern Polytechnical University, 2015: 26-28 (in Chinese) . | |
22 | 胡巍, 杨智春, 谷迎松. 带操纵面机翼气动弹性地面试验仿真系统中的气动力降阶方法[J]. 西北工业大学学报, 2013, 31(5): 810-815. |
HU W, YANG Z C, GU Y S. A new and effective method for reducing order of aerodynamics of a wing with control surface for ground flutter test[J]. Journal of Northwestern Polytechnical University, 2013, 31(5): 810-815 (in Chinese). | |
23 | 李晓东, 杨文岐, 刘浩. 基于纯随机激励的热模态试验技术研究[J]. 强度与环境, 2015, 42(2): 52-56. |
LI X D, YANG W Q, LIU H. The study of thermo-modal test technique based on true-random excitation[J]. Structure & Environment Engineering, 2015, 42(2): 52-56 (in Chinese). | |
24 | 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6): 1861-1875. |
WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1 200 ℃ high-temperature environments[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1861-1875 (in Chinese). |
/
〈 |
|
〉 |