机器人柔性翻边成形轨迹优化
收稿日期: 2021-12-31
修回日期: 2022-01-25
录用日期: 2022-03-13
网络出版日期: 2022-06-08
基金资助
国家重点研发计划(2020YFA0711102);一院高校联合创新基金项目(CALT201809)
Trajectory optimization of robot-assisted flexible flanging
Received date: 2021-12-31
Revised date: 2022-01-25
Accepted date: 2022-03-13
Online published: 2022-06-08
Supported by
National Key Research and Development Program of China(2020YFA0711102);Joint Innovation Fund of CALT(CALT201809)
单条边或多条边带弧度翻边钣金件,在航空航天中应用广泛。采用机器人柔性翻边成形技术可克服传统手工成形劳动强度大,效率低,产品质量一致性和可靠性难以保证等局限性,实现多品种、小批量翻边钣金件快速精确成形制造。然而,机器人柔性翻边成形技术属于轨迹控制的局部加载成形技术,在成形过程中易出现自由端塌陷及回弹等缺陷。针对此问题,以典型特征翻边件为研究对象,采用有限元仿真和实验相结合的方法,分析了柔性翻边成形过程中塌陷形成机理,进而系统开展机器人柔性翻边成形轨迹优化研究。研究结果表明:成形滚轮切入轨迹对翻边件自由端塌陷影响最大,应选择自由端预压方案,且切入点距自由端距离取值为20 mm时改善效果最好;采用优化后的成形滚轮切入切出轨迹进行柔性翻边成形实验,可获得自由端无塌陷、翻边开角误差小于0.5°及过渡圆角半径误差小于0.5 mm的翻边件。
程旋 , 赵亦希 , 尤舒曼 . 机器人柔性翻边成形轨迹优化[J]. 航空学报, 2023 , 44(4) : 426886 -426886 . DOI: 10.7527/S1000-6893.2022.26886
A certain edge or multiple edges with curved flanged sheet metal parts are widely used in aerospace. The use of robot-assisted flexible flanging technology can overcome the limitations of traditional manual forming such as high labor intensity, low efficiency, and difficulty in guaranteeing the consistency and reliability of product quality, and realize the rapid and accurate forming of multi-passes and small-patch flanged sheet metal parts. However, robot-assisted flexible flanging technology is a trajectory-controlled local loading forming technology, which is prone to such defects as free end collapse and springback during the forming process. Combined finite element simulation with experiment, the mechanism of collapse formation in the flexible flanging process is analyzed; the robot flexible flanging trajectory optimization is then studied. The results of the study show that the rolling-in trajectory of the forming roller has the greatest influence on the free end collapse of the flanged part, and the best improvement effect is achieved when the free end pre-forming scheme is selected and the distance from the rolling-in point to the free end is 20 mm. Based on the optimized forming roller rolling-in and rolling-out trajectory, the flanged parts can be obtained without free end collapse, and the error of the flanging opening angle and the fillet radius is less than 0.5° and 0.5 mm, respectively.
1 | LóPEZ J A, CENTENO G, MARTíNEZ A J, et al. Stretch-flanging of AA2024-T3 sheet by single-stage SPIF [J]. Thin-Walled Structures, 2021, 160: 107338. |
2 | CAO T, LU B, OU H, et al. Investigation on a new hole-flanging approach by incremental sheet forming through a featured tool [J]. International Journal of Machine Tools and Manufacture, 2016, 110: 1-17. |
3 | XU F, LIN Z Q, LI S H, et al. Study on the influences of geometrical parameters on the formability of stretch curved flanging by numerical simulation [J]. Journal of Materials Processing Technology, 2004, 145(1): 93-98. |
4 | HU P, LI D Y, LI Y X. Analytical models of stretch and shrink flanging [J]. International Journal of Machine Tools & Manufacture, 2003, 43(13): 1367-1373. |
5 | ZHANG G, YAO J, HU S J, et al. Shrink flanging with surface contours [J]. Journal of Manufacturing Processes, 2003, 5(2): 143-153. |
6 | LIVATYALI H, WU H C, ALTAN T. Prediction and elimination of springback in straight flanging using computer-aided design methods Part 2: FEM predictions and tool design [J]. Journal of Materials Processing Technology, 2002, 120(1-3): 348-354. |
7 | LIN H S, LEE C Y, WU C H. Hole flanging with cold extrusion on sheet metals by FE simulation [J]. International Journal of Machine Tools and Manufacture, 2007, 47(1): 168-174. |
8 | GOLOVASHCHENKO S F. Sharp flanging and flat hemming of aluminum exterior body panels [J]. Journal of Materials Engineering and Performance, 2005, 14(4): 508-515. |
9 | BURANATHITI T, CAO J. An effective analytical model for springback prediction in straight flanging processes [J]. International Journal of Materials & Product Technology, 2004, 21(1-3): 137-153. |
10 | 崔笑蕾, 詹梅, 高鹏飞, 等. 虑及板坯几何和性能波动的薄壁件塑性成形数值模拟研究进展 [J]. 航空学报, 2021, 42(10): 525145. |
CUI X L, ZHAN M, GAO P F, et al. Advances in numerical simulation of plastic forming of thin walled components considering blank geometry and performance fluctuation [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 525145 (in Chinese). | |
11 | GU Z, WANG G, YU G. Investigation on fracture of a 6014-T4 aluminum alloy sheet in the flanging and hemming process based on numerical and experimental methods [J]. Metals, 2020, 10(1): 1-14. |
12 | HAN K, LI X Q, PENG X Y, et al. Experimental and numerical study on the deformation mechanism of straight flanging by incremental sheet forming [J]. International Journal of Mechanical Sciences, 2019, 160: 75-89. |
13 | EFTHYMIADIS P, HAZRA S, CLOUGH A, et al. Revealing the mechanical and microstructural performance of multiphase steels during tensile, forming and flanging operations [J]. Materials Science and Engineering: A, 2017, 701: 174-186. |
14 | CHEN L, CHEN H Q, WANG Q Y, et al. Studies on wrinkling and control method in rubber forming using aluminium sheet shrink flanging process [J]. Materials & Design, 2015, 65: 505-510. |
15 | WEN T, ZHANG S, ZHENG J, et al. Bi-directional dieless incremental flanging of sheet metals using a bar tool with tapered shoulders [J]. Journal of Materials Processing Technology, 2016, 229: 795-803. |
16 | SU H, HUANG L, LI J, et al. Two-step electromagnetic forming: A new forming approach to local features of large-size sheet metal parts [J]. International Journal of Machine Tools and Manufacture, 2018, 124: 99-116. |
17 | RAJAK A K, KORE S D. Experimental investigation of aluminium–copper wire crimping with electromagnetic process: Its advantages over conventional process [J]. Journal of Manufacturing Processes, 2017, 26: 57-66. |
18 | YU H, ZHENG Q, WANG S, et al. The deformation mechanism of circular hole flanging by magnetic pulse forming [J]. Journal of Materials Processing Technology, 2018, 257: 54-64. |
19 | KUMAR S, AHMED M, PANTHI S K. Effect of punch profile on deformation behaviour of AA5052 sheet in stretch flanging process [J]. Archives of Civil and Mechanical Engineering, 2020, 20(18): 1-17. |
20 | 章绍昆, 毕庆贞, 王宇晗. 镜像铣削加工奇异区域刀具路径优化 [J]. 航空学报, 2021, 42(10): 524591. |
ZHANG S K, BI Q Z, WANG Y H. Too path optimization for mirror milling in singular area [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524591 (in Chinese). | |
21 | 徐勇, 尹阔, 夏亮亮, 等 面向航空铝合金薄壁深腔构件的冲击液压成形工艺优化 [J]. 航空学报, 2021, 42(10): 524831. |
XU Y, YIN K, XIA L L, et al. Optimization of impact hydroforming process for aeronautical components of aluminum alloy sheets with thin wall and deep cavity [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524831 (in Chinese). | |
22 | BORREGO M, MORALES-PALMA D, MARTINEZ-DONAIRE A J, et al. Experimental study of hole-flanging by single-stage incremental sheet forming [J]. Journal of Materials Processing Technology, 2016, 237: 320-330. |
23 | DEWANG Y, PANTHI S K, HORA M S. Binder force effect on stretch flange forming of aluminum alloy [J]. Materials and Manufacturing Processes, 2019, 34(13): 1516-1527. |
24 | DEWANG Y, HORA M S, PANTHI S K. Prediction of crack location and propagation in stretch flanging process of aluminum alloy AA-5052 sheet using FEM simulation [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(7): 2308-2320. |
25 | LE PORT A, THUILLIER S, MANACH P Y. Characterization of surface defects after flanging of metallic sheets [J]. Journal of Materials Processing Technology, 2011, 211(12): 2062-2071. |
26 | HAMEDON Z, ABE Y, MORI K. Improvement of formability of high strength steel sheets in shrink flanging[C]∥IOP Conference Series: Materials Science and Engineering, 2016, 114(1): 012001. |
27 | 胡逸辉, 李杰, 赵亦希, 等. 机器人柔性翻边新工艺 [J]. 机械设计与研究, 2020, 36(3): 100-110. |
HU Y H, LI J, ZHAO Y X, et al. New process for robot flexible flanging [J]. Machine Design and Research, 2020, 36(3): 100-110 (in Chinese). | |
28 | 尤舒曼, 李杰, 赵亦希, 等. 柔性翻边成形工艺参数研究 [J]. 上海交通大学学报, 2021, 55(10): 1246-1254. |
YOU S M, LI J, ZHAO Y X, et al. Process parameters of flexible flanging [J]. Journal of Shanghai Jiaotong University, 2021, 55(10): 1246-1254 (in Chinese). |
/
〈 |
|
〉 |