综合脉冲星时研究进展
收稿日期: 2021-09-26
修回日期: 2021-12-24
录用日期: 2022-05-15
网络出版日期: 2022-06-08
基金资助
国家自然科学基金(42030105);科技部SKA专项(2020SKA0120103)
Review on research progress of ensemble pulsar time-scale
Received date: 2021-09-26
Revised date: 2021-12-24
Accepted date: 2022-05-15
Online published: 2022-06-08
Supported by
National Natural Science Foundation of China(42030105);SKA Special Project of Ministry of Science and Technology(2020SKA0120103)
脉冲星计时分析方法包括广义最小二乘法和贝叶斯方法。在分别介绍这2种分析方法的基础上,概括描述综合脉冲星时算法与研究结果。目前,已经建立并在研究工作中实际采用的综合脉冲星时(EPT)算法,主要包括基于TEMPO2软件包的广义最小二乘算法(频率分析法)、贝叶斯算法和维纳滤波算法。给出了采用不同算法的具有代表性的综合脉冲星时研究结果。基于国际脉冲星计时阵(IPTA)长期计时观测资料,综合脉冲星时研究结果表明,以国际原子时(TAI)为参考,采用不同算法得到的综合脉冲星时EPT-TAI,都能够检测到TAI的系统误差TT-TAI。以地球时(TT)为参考还可以得到综合脉冲星时EPT-TT。以所提出的改进维纳滤波算法得到的综合脉冲星时EPT-TAI为例,其频率稳定度分析表明,综合脉冲星时EPT-TAI基本不存在红噪声,在8年以上的频率稳定度略优于原子时TT-TAI。而综合脉冲星时EPT-TT频率稳定度略优于EPT-TAI。与综合脉冲星时不同,消除二次项的原子时TT-TAI的频率稳定度存在明显低频红噪声。最后,总结3种综合脉冲星时算法的各自特征,讨论关于改进综合脉冲星时短期频率稳定度等问题,并给出脉冲星时研究的有关初步结论。
杨廷高 , 高玉平 , 童明雷 , 李变 , 赵成仕 , 罗近涛 , 朱幸芝 , 魏飞 . 综合脉冲星时研究进展[J]. 航空学报, 2023 , 44(3) : 526443 -526443 . DOI: 10.7527/S1000-6893.2022.26443
Now generalized least square fitting and a Bayesian approach to pulsar timing analysis are successfully used. An introduction on these two methods for pulsar timing analysis is provided. Up to today, three kinds of algorithms of constructing an ensemble pulsar time-scale using millisecond pulsar timing data were developed, which were the generalized least square fitting algorithm, the Bayesian analysis technology and the optimal Wiener filtration. We describe the above three algorithms in some details, and show some derived representative results on Ensemble Pulsar Time-scale (EPT) already published and results that we recently derived using improved Wiener filtration from International Pulsar Timing Array (IPTA) data release 2. All the results showed here indicate that the EPT with respect to the International Atomic Time scale (TAI) detected correctly the systematic errors in the TAI. Frequency stability analysis for the ensemble pulsar time-scale EPT-TAI we developed, as an example, indicates that the frequency stability on 8 year and longer time intervals show a little better secular stability than the TT-TAI. The TT-TAI is difference between Terrestrial Time scale (TT) and TAI. Quadratic term in the TT-TAI is removed to make a comparison with pulsar time-scale. Based on the frequency stability analysis, It is clear that TT-TAI shows some red noise, while there is no red noise detected in the EPT-TAI. Finally, we summarize the three algorithms on constructing an ensemble pulsar time scale. The question on improving short time interval stability of pulsar time-scale is discussed. Some preliminary conclusions on EPT research work are given.
Key words: astrometry; time scale; millisecond pulsar; pulsar timing array; pulsar time-scale
1 | GUINOT B. Atomic time scales for pulsar studies and other demanding applications[J]. Astronomy and Astrophysics, 1988, 192: 370-373. |
2 | GUINOT B, PETIT G. Atomic time and rotation of pulsars[J]. Astronomy and Astrophysics, 1991, 248: 292-296. |
3 | HOBBS G, COLES W, MANCHESTER R N, et al. Development of a pulsar-based time-scale[J]. Monthly Notices of the Royal Astronomical Society, 2012, 427(4): 2780-2787. |
4 | FOSTER R S, BACKER D C. Constructing a pulsar timing array[J]. The Astrophysical Journal, 1990, 361: 300. |
5 | MANCHESTER R N, HOBBS G, BAILES M,et al. The Parkes pulsar timing array project [DB/OL]. arXiv preprint: 1210.6130v1, 2012. |
6 | MANCHESTER R. N. Pulsar timing array and their application[DB/OL]. arXiv preprint: 1101.5202v1, 2011. |
7 | MANCHESTER R N. The international pulsar timing array [DB/OL]. arXiv preprint: 1309.7392v1, 2013. |
8 | HOBBS G, ARCHIBALD A, ARZOUMANIAN Z, et al. The international pulsar timing array project: Using pulsars as a gravitational wave detector[J]. Classical and Quantum Gravity, 2010, 27(8): 084013. |
9 | VERBIEST J P W, LENTATI L, HOBBS G, et al. The international pulsar timing array: First data release[J]. MNRAS, 2016, 458: 1267-1288. |
10 | PERERA B B P, DECESAR M E, DEMOREST P B, et al. The international pulsar timing array: Second data release[DB/OL]. arXiv: , 2019. |
11 | HOTAN A W, VAN STRATEN W, MANCHESTER R N. Psrchive and psrfits: An open approach to radio pulsar data storage and analysis[J]. Publications of the Astronomical Society of Australia, 2004, 21(3): 302-309. |
12 | TAYLOR J H. Pulsar timing and relativistic gravity[J]. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1992, 341(1660): 117-134. |
13 | LENTATI L, TAYLOR S R, MINGARELLI C M F, et al. European pulsar timing array limits on an isotropic stochastic gravitational-wave background[J]. Monthly Notices of the Royal Astronomical Society, 2015, 453(3): 2576-2598. |
14 | LEE K J, BASSA C G, JANSSEN G H, et al. Model-based asymptotically optimal dispersion measure correction for pulsar timing[J]. Monthly Notices of the Royal Astronomical Society, 2014, 441(4): 2831-2844. |
15 | KEITH M J, COLES W, SHANNON R M, et al. Measurement and correction of variations in interstellar dispersion in high-precision pulsar timing[J]. Monthly Notices of the Royal Astronomical Society, 2012, 429(3): 2161-2174. |
16 | TIBURZI C, HOBBS G, KERR M, et al. A study of spatial correlations in pulsar timing array data[J]. Monthly Notices of the Royal Astronomical Society, 2015, 455(4): 4339-4350. |
17 | HOBBS G B, EDWARDS R T, MANCHESTER R N. Tempo2, a new pulsar-timing package - I. An overview[J]. Monthly Notices of the Royal Astronomical Society, 2006, 369(2): 655-672. |
18 | FOSTER R S, CORDES J M. Interstellar propagation effects and the precision of pulsar timing[J]. The Astrophysical Journal Letters, 1990, 364: 123. |
19 | PHILLIPS J A, WOLSZCZAN A. Precision measurements of pulsar dispersion[J]. The Astrophysical Journal Letters, 1992, 385: 273. |
20 | HOBBS G, GUO L, CABALLERO R N, et al. A pulsar-based time-scale from the international pulsar timing array[J]. Monthly Notices of the Royal Astronomical Society, 2019, 491(4): 5951-5965. |
21 | EDWARDS R T, HOBBS G B, MANCHESTER R N. Tempo2, a new pulsar timing package - II. The timing model and precision estimates[J]. Monthly Notices of the Royal Astronomical Society, 2006, 372(4): 1549-1574. |
22 | SPLAVER E M. Long-term timing of millisecond pulsars[D]. Princeton: Princeton University, 2004. |
23 | FUKUSHIMA T. Time ephemeris[J]. Highlights of Astronomy, 1995, 10: 256-257. |
24 | IRWIN A, FUKUSHIMA T. A numerical time ephemeris of the earth[J]. Astronomy and Astrophysics, 1999, 348(2): 642-652. |
25 | SEIDELMANN P, FUKUSHIMA T. Why new time scales? [J]. Astronomy and Astrophysics, 1992, 265: 833-838. |
26 | RAWLEY L A, TAYLOR J H, DAVIS M M. Fundamental astrometry and millisecond pulsars[J]. The Astrophysical Journal Letters, 1988, 326: 947. |
27 | KASPI V M, TAYLOR J H, RYBA M F. High-precision timing of millisecond pulsars. III. Long-term monitoring of PSRs B1855+09 and B1937+21[J]. The Astrophysical Journal Letters, 1994, 428: 713. |
28 | DAMOUR T, DERUELLE N. General relativistic celestial mechanics of binary systems. II. The post-Newtonian timing formula[J]. Annales De L Institut Henri Poincare-Physique Theorique, 1986, 44: 263-292. |
29 | TAYLOR J H, WEISBERG J M. A new test of general relativity - gravitational radiation and the binary pulsar PSR 1913+16[J]. The Astrophysical Journal Letters, 1982, 253: 908. |
30 | TAYLOR J H, WEISBERG J M. Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16[J]. The Astrophysical Journal Letters, 1989, 345: 434. |
31 | BLANDFORD R, TEUKOLSKY S A. Arrival-time analysis for a pulsar in a binary system[J]. The Astrophysical Journal Letters, 1976, 205: 580. |
32 | PETIT G, TAVELLA P. Pulsars and time scales[J]. Astronomy and Astrophysics, 1996, 308(1): 290-298. |
33 | CORDES J M, WOLSZCZAN A, DEWEY R J, et al. Timing and scintillations of the millisecond pulsar 1937 + 214[J]. The Astrophysical Journal Letters, 1990, 349: 245. |
34 | KOPEIKIN S M. Millisecond and binary pulsars as nature's frequency standards—II. The effects of low-frequency timing noise on residuals and measured parameters[J]. Monthly Notices of the Royal Astronomical Society, 1999, 305(3): 563-590. |
35 | KOPEIKIN S M. Millisecond and binary pulsars as nature's frequency standards: I. A generalized statistical model of low-frequency timing noise[J]. Monthly Notices of the Royal Astronomical Society, 1997, 288(1): 129-137. |
36 | COLES W, HOBBS G, CHAMPION D J, et al. Pulsar timing analysis in the presence of correlated noise[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(1): 561-570. |
37 | CHAMPION D J, HOBBS G B, MANCHESTER R N, et al. Measuring the mass of solar system planets using pulsar timing[J]. AIP Conference Proceedings, 2011, 1357(1): 93-96. |
38 | VAN HAASTEREN R, LEVIN Y. Understanding and analysing time-correlated stochastic signals in pulsar timing[J]. Monthly Notices of the Royal Astronomical Society, 2012, 428(2): 1147-1159. |
39 | VAN HAASTEREN R, LEVIN Y, MCDONALD P, et al. On measuring the gravitational-wave background using pulsar timing arrays[J]. Monthly Notices of the Royal Astronomical Society, 2009, 395(2): 1005-1014. |
40 | LENTATI L, ALEXANDER P, HOBSON M P, et al. Temponest: A Bayesian approach to pulsar timing analysis[J]. Monthly Notices of the Royal Astronomical Society, 2013, 437(3): 3004-3023. |
41 | LENTATI L, ALEXANDER P, HOBSON M P, et al. Hyper-efficient model-independent Bayesian method for the analysis of pulsar timing data[J]. Physical Review D, 2013, 87(10): 104021. |
42 | FEROZ F, HOBSON M P, BRIDGES M. MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics[J]. Monthly Notices of the Royal Astronomical Society, 2009, 398(4): 1601-1614. |
43 | CABALLERO R N, LEE K J, LENTATI L, et al. The noise properties of 42 millisecond pulsars from the European pulsar timing array and their impact on gravitational-wave searches[J]. Monthly Notices of the Royal Astronomical Society, 2016, 457(4): 4421-4440. |
44 | DENG X P, COLES W, HOBBS G, et al. Optimal interpolation and prediction in pulsar timing[J]. Monthly Notices of the Royal Astronomical Society, 2012, 424(1): 244-251. |
45 | RODIN A E. Optimal filters for the construction of the ensemble pulsar time[J]. Monthly Notices of the Royal Astronomical Society, 2008, 387(4): 1583-1588. |
46 | 仲崇霞,杨廷高.小波域中的维纳滤波在综合脉冲星时算法中的应用[J].物理学报,2007, 5(10): 6157-6163. |
ZHONG C X, YANG T G. Use of Wiener filtration in wavelet domain in ensemble pulsar time algorithm[J]. Acta Physica Sinica, 2007, 5(10): 6157-6163 (in Chinese). | |
47 | MATSAKIS D, TAYLOR J, EUBANKS T. A statistic for describing pulsar and clock stabilities[J]. Astronomy and Astrophysics, 1997, 326: 924-928. |
48 | YIN D S, GAO Y P, ZHAO S H. Ensemble pulsar time scale[J]. Chinese Astronomy and Astrophysics, 2017, 41(3): 430-441. |
49 | 周庆勇, 魏子卿, 张华, 等. 基于双谱滤波的综合脉冲星时算法研究[J]. 天文学报, 2021, 62(2): 88-97. |
ZHOU Q Y, WEI Z Q, ZHANG H, et al. Research on ensemble pulsar time algorithm based on bispectral filter[J]. Acta Astronomica Sinica, 2021, 62(2): 88-97 (in Chinese). | |
50 | DEMOREST P B, FERDMAN R D, GONZALEZ M E, et al. Limits on the stochastic gravitational wave background from the North American nanohertz observatory for gravitational waves[J]. The Astrophysical Journal Letters, 2013, 762(2): 94. |
51 | JENET F A, HOBBS G B, VAN STRATEN W, et al. Upper bounds on the low‐frequency stochastic gravitational wave background from pulsar timing observations: Current limits and future prospects[J]. The Astrophysical Journal Letters, 2006, 653(2): 1571-1576. |
52 | OS?OWSKI S, VAN STRATEN W, HOBBS G B, et al. High signal-to-noise ratio observations and the ultimate limits of precision pulsar timing[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(2): 1258-1271. |
53 | SHANNON R M, OS?OWSKI S, DAI S, et al. Limitations in timing precision due to single-pulse shape variability in millisecond pulsars[J]. Monthly Notices of the Royal Astronomical Society, 2014, 443(2): 1463-1481. |
/
〈 |
|
〉 |