大型客机增升构型缝翼除冰状态失速特性
收稿日期: 2022-02-25
修回日期: 2022-03-09
录用日期: 2022-03-25
网络出版日期: 2022-04-24
基金资助
国家科技专项
Stall performance of high-lift configuration of large civil aircraft with slat de-icing
Received date: 2022-02-25
Revised date: 2022-03-09
Accepted date: 2022-03-25
Online published: 2022-04-24
Supported by
National Science and Technology Project
在防/除冰系统工作前提下翼面前缘残余积冰对全机失速特性的影响是评估系统效能是否达标的直接依据。针对中外翼区域重点防护的大型客机增升构型除冰方案,基于数值模拟方法对比分析了缝翼未结冰、未除冰、除冰状态下的失速特性。数值模拟结论表明虽然中外翼防/除冰防护区域较同类民机型号有所缩减,但仍能维持内翼始发分离流动形态、保证临界迎角附近的纵向力矩安定性、有效拓展失速边界。当前方案取消当地结冰防护的空气动力学依据是短舱外侧固有的下洗-展向流动综合效应已能充分削弱来流迎角影响,进而抑制局部结冰诱导的流动分离。研究结论可为防护区域设计优化及大型客机结冰适航取证提供理论依据。
黄雄 , 曲仕茹 , 张恒 , 陈显调 . 大型客机增升构型缝翼除冰状态失速特性[J]. 航空学报, 2023 , 44(1) : 627077 -627077 . DOI: 10.7527/S1000-6893.2022.27077
Under the working condition of the anti-icing/de-icing system, the influence of residual ice on the stall performance of aircraft is the direct basis for evaluating whether the system efficiency meets the design standard. Aiming at the protection scheme of the outboard wing for a high-lift configuration of large civil aircraft, we compare the stall and separation characteristics under the conditions of slat without icing/icing/de-icing with the numerical simulation method. Despite the reduction of the protection area scheme of outboard wing for a high-lift configuration compared with similar civil aircraft, the current scheme can still keep the separation pattern occurring from inboard, ensure the longitudinal moment stability near the critical angle of attack, and effectively expand the stall boundary. The aerodynamic basis for canceling the local protection is the inherent comprehensive effect of downwash and spanwise flow outside the nacelle, which will weaken the impact of the angle of attack and inhibit the flow separation induced by local icing. The conclusions of this paper provide a theoretical basis for the design optimization of protection area and the icing certification of large civil aircraft.
1 | LYNCH F T, KHODADOUST A. Effects of ice accretions on aircraft aerodynamics[J]. Progress in Aerospace Sciences, 2001, 37(8): 669-767. |
2 | CAO Y H, WU Z L, SU Y, et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences, 2015, 74: 62-80. |
3 | LEADER R, TAKAHASHI T T. Frosty weather: the regulatory history of aircraft operations in freezing conditions[C]∥ AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 2019-1958. |
4 | THOMAS S K, CASSONI R P, MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft, 1996, 33(5): 841-854. |
5 | 孔满昭, 段卓毅, 马玉敏. 机翼展向不同部位结冰对飞机气动力特性影响研究[J]. 实验流体力学, 2016, 30(2): 32-37. |
KONG M Z, DUAN Z Y, MA Y M. Study on aerodynamic characteristics of ice accretion in different wing span sections[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 32-37 (in Chinese). | |
6 | BRAGG M, PERKINS W, SARTER N, et al. An interdisciplinary approach to inflight aircraft icing safety[C]∥ 36th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1998: 1998-95. |
7 | 禹志龙, 李颖晖, 郑无计, 等. 复杂结冰环境下飞机鲁棒飞行安全包线分析[J]. 航空学报, 2020, 41(1): 123223. |
YU Z L, LI Y H, ZHENG W J, et al. Robust flight safe envelope analysis for aircraft under complex icing conditions[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 123223 (in Chinese). | |
8 | 赵宾宾, 黎先平, 李杰, 等. 基于容冰概念的民机结冰保护系统设计方法研究综述[J]. 西北工业大学学报, 2021, 39(4): 731-738. |
ZHAO B B, LI X P, LI J, et al. Research review on design method of ice protection system for civil aircraft based on ice-tolerant concept[J]. Journal of Northwestern Polytechnical University, 2021, 39(4): 731-738 (in Chinese). | |
9 | STEBBINS S J, LOTH E, BROEREN A P, et al. Review of computational methods for aerodynamic analysis of iced lifting surfaces[J]. Progress in Aerospace Sciences, 2019, 111: 100583. |
10 | SANKAR L, PHAENGSOOK N, BANGALORE A. Effects of icing on the aerodynamic performance of high lift airfoils[C]∥ 31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 1993-26. |
11 | RAKOWITZ M, PATEL K, KAFYEKE F. Numerical validation of a transport aircraft high-lift configuration including ice[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 2008-334. |
12 | PRINCE RAJ L, LEE J W, MYONG R S. Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions[J]. Aerospace Science and Technology, 2019, 85: 320-333. |
13 | LEE Y M, LEE J H, RAJ L P, et al. Large-eddy simulations of complex aerodynamic flows over multi-element iced airfoils[J]. Aerospace Science and Technology, 2021, 109: 106417. |
14 | SANG W M, LI F W, SHI Y Y. Icing effect study for wing/body and high-lift wing configurations[C]∥ 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 2007-1077. |
15 | 桑为民, 李凤蔚, 施永毅. 结冰对翼型和多段翼型绕流及气动特性影响研究[J]. 西北工业大学学报, 2005, 23(6): 729-732. |
SANG W M, LI F W, SHI Y Y. Icing research on airfoil and multi-element airfoil based on flow field and aerodynamic performance[J]. Journal of Northwestern Polytechnical University, 2005, 23(6): 729-732 (in Chinese). | |
16 | ZHANG C, WANG F X, KONG W L, et al. The characteristics of SLD icing accretions and aerodynamic effects on high-lift configurations[C]∥ 33rd AIAA Applied Aerodynamics Conference. Reston: AIAA, 2015: 2015-3385. |
17 | ZHANG C, LIU H, WANG F X, et al. Supercooled large droplet icing accretion and its unsteady aerodynamic characteristics on high-lift devices[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(10): 1985-1997. |
18 | 李冬, 张辰, 王福新, 等. 多段翼型的大粒径过冷水滴结冰特征及气动影响分析[J]. 上海交通大学学报, 2017, 51(8): 921-931. |
LI D, ZHANG C, WANG F X, et al. An investigation on the characteristics of supercooled large droplet icing accretions and aerodynamic effects on high-lift configuration[J]. Journal of Shanghai Jiao Tong University, 2017, 51(8): 921-931 (in Chinese). | |
19 | 张恒, 李杰, 龚志斌. 多段翼型缝翼前缘结冰大迎角分离流动数值模拟[J]. 航空学报, 2017, 38(2): 520746. |
ZHANG H, LI J, GONG Z B. Numerical simulation of separated flow around a multi-element airfoil at high angle of attack with iced slat[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 520746 (in Chinese). | |
20 | XIAO M C, ZHANG Y F, ZHOU F. Numerical investigation of the unsteady flow past an iced multi-element airfoil[J]. AIAA Journal, 2020, 58(9): 3848-3862. |
21 | STEBBINS S, LOTH E, BROEREN A, et al. Aerodynamics of a common research model wing with leading-edge ice shape[J]. Journal of Aircraft, 2021, 58(4): 894-906. |
22 | 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1): 522759. |
CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522759 (in Chinese). | |
23 | 李浩然, 段玉宇, 张宇飞, 等. 结冰模拟软件AERO-ICE中的关键数值方法[J]. 航空学报, 2021, 42(S1): 107-122. |
LI H R, DUAN Y Y, ZHANG Y F, et al. Numerical method of ice-accretion software AERO-ICE[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(S1): 107-122 (in Chinese). | |
24 | 陈迎春, 李亚林, 叶军科, 等. C919飞机增升装置工程应用技术研究进展[J]. 航空工程进展, 2010, 1(1): 1-5. |
CHEN Y C, LI Y L, YE J K, et al. Study progress about high-lift system of C919 airplane[J]. Advances in Aeronautical Science and Engineering, 2010, 1(1): 1-5 (in Chinese). | |
25 | JAMESON A, SCHMIDT W, TURKEL E. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes[C]∥ 14th Fluid and Plasma Dynamics Conference. Reston: AIAA, 1981: 1981-1259. |
26 | ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. |
27 | VAN LEER B. Towards the ultimate conservative difference scheme[J]. Journal of Computational Physics, 1997, 135(2): 229-248. |
28 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992: 1992-439. |
29 | JAMESON A. Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings[C]∥ 10th Computational Fluid Dynamics Conference. Reston: AIAA, 1991: 1991-1596. |
30 | RUMSEY C L, SLOTNICK J P, LONG M, et al. Summary of the first AIAA CFD high-lift prediction workshop[J]. Journal of Aircraft, 2011, 48(6): 2068-2079. |
31 | 倪章松, 刘森云, 王桥, 等. 3m×2m结冰风洞试验技术研究进展[J]. 实验流体力学, 2019, 33(6): 46-53. |
NI Z S, LIU S Y, WANG Q, et al. Research progress of test technologies for 3m × 2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 46-53 (in Chinese). | |
32 | WOODARD B S, BROEREN A P, LEE S, et al. Summary of ice shape geometric fidelity studies on an iced swept wing[C]∥ 2018 Atmospheric and Space Environments Conference. Reston: AIAA, 2018: 2018-3494. |
33 | OBERT E. Aerodynamic design of transport aircraft[M]. Amsterdam: IOS Press Inc, 2009. |
34 | BROEREN A P, LEE S, SHAH G H, et al. Aerodynamic effects of simulated ice accretion on a generic transport model: NASA/TM-2012-217246[R]. Washington, D.C.: NASA, 2012. |
/
〈 |
|
〉 |