固体力学与飞行器总体设计

面向航空结构低频振动的力电耦合超材料板设计

  • 沈显邦 ,
  • 易凯军 ,
  • 景旭贞 ,
  • 刘智元 ,
  • 朱睿
展开
  • 1.北京理工大学 宇航学院,北京 100081
    2.中国空间技术研究院 总体设计部,北京 100098

收稿日期: 2022-01-17

  修回日期: 2022-02-16

  录用日期: 2022-04-02

  网络出版日期: 2022-04-06

基金资助

国家自然科学基金(12202052);国家重点研发计划(2021YFE0110900)

Design of electromechanical coupled metamaterial plates for low-frequency vibration control in aircraft structures

  • Xianbang SHEN ,
  • Kaijun YI ,
  • Xuzhen JING ,
  • Zhiyuan LIU ,
  • Rui ZHU
Expand
  • 1.School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China
    2.China Academy of Space Technology,Beijing 100098,China

Received date: 2022-01-17

  Revised date: 2022-02-16

  Accepted date: 2022-04-02

  Online published: 2022-04-06

Supported by

National Natural Science Foundation of China(12202052);National Key Research and Development Program of China(2021YFE0110900)

摘要

针对航空结构低频振动控制难的问题,提出将负电容与电感电路结合设计具有优异低频振动特性的力电耦合超材料板结构。该超材料板包含作为基底的普通板结构、周期分布在板表面的压电单元及与压电单元相连的包含电感和负电容的分流电路。首先通过有效介质理论,得到了超材料板等效抗弯刚度解析表达式并进行了修正。在此基础上,通过分析负电容对等效抗弯刚度的影响阐明了负电容拓宽禁带的机制。进一步推导了禁带范围的解析表达式,研究了负电容对禁带范围和位置的影响规律,理论结果表明负电容与电感并联可以将禁带宽度拓宽至原来的20倍以上。最后,通过数值算例验证了引入负电容后力电耦合超材料板能够在目标低频范围实现很好的振动抑制效果。

本文引用格式

沈显邦 , 易凯军 , 景旭贞 , 刘智元 , 朱睿 . 面向航空结构低频振动的力电耦合超材料板设计[J]. 航空学报, 2023 , 44(5) : 226959 -226959 . DOI: 10.7527/S1000-6893.2022.26959

Abstract

To overcome the difficulty of low-frequency vibration control in aircraft structures, a circuit with combined negative capacitance and inductance was proposed to design electromechanical coupled metamaterial plate with excellent low-frequency vibration characteristics. The metamaterial plate is composed of a general plate as the main structure, piezoelectric patches periodically arranged on the surface of the plate, and shunts connected with the piezoelectric patches including negative capacitance and inductance. Derived an analytical expression for equivalent bending stiffness of metamaterial plates based on the effective medium theory, and corrected the expression. On this basis, clarified the mechanism of broadening bandgaps via negative capacitance by analyzing the influence of negative capacitance on equivalent bending stiffness. Influence of negative capacitance on the bandgap range and position were studied, and the analytical expression was derived. The results show that the width of the bandgap can be broadened to more than 20 times when negative capacitance is in parallel with inductance. Finally, simulation results show that the electromechanical coupled metamaterial plate with negative capacitance can achieve significant vibration suppression effect in the target low-frequency range.

参考文献

1 LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science2000289(5485): 1734-1736.
2 XIAO Y, WEN J H, WANG G, et al. Theoretical and experimental study of locally resonant and bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators[J]. Journal of Vibration and Acoustics2013135(4):41006-41023.
3 JUNG J, KIM H G, GOO S,et al. Realisation of a locally resonant metamaterial on the automobile panel structure to reduce noise radiation[J]. Mechanical Systems and Signal Processing2019122: 206-231.
4 DROZ C, ROBIN O, ICHCHOU M, et al. Improving sound transmission loss at ring frequency of a curved panel using tunable 3D-printed small-scale resonators[J]. The Journal of the Acoustical Society of America2019145(1): EL72-EL78.
5 SUN L, AU-YEUNG K Y, YANG M, et al. Membrane-type resonator as an effective miniaturized tuned vibration mass damper[J]. AIP Advances20166(8): 085212.
6 MA F Y, CAI Y Q, WU J H. Ultralight plat-type vibration damper with designable working bandwidth and strong multi-peak suppression performance[J]. Journal of Physics D: Applied Physics202154(5): 055303.
7 CHEN Y Y, BARNHART M V, CHEN J K, et al. Dissipative elastic metamaterials for broadband wave mitigation at subwavelength scale[J]. Composite Structures2016136: 358-371.
8 BARNHART M V, XU X, CHEN Y, et al. Experimental demonstration of a dissipative multi-resonator metamaterial for broadband elastic wave attenuation[J]. Journal of Sound and Vibration2019438: 1-12.
9 TANIKER S, YILMAZ C. Design, analysis and experimental investigation of three-dimensional structures with inertial amplification induced vibration stop bands[J]. International Journal of Solids and Structures201572: 88-97.
10 THORP O, RUZZENE M, BAZ A. Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches[J]. Smart Materials and Structures200110(5): 979-989.
11 CASADEI F, RUZZENE M, DOZIO L, et al. Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates[J]. Smart Materials and Structures201019(1): 015002.
12 CASADEI F, DOZIO L, RUZZENE M, et al. Periodic shunted arrays for the control of noise radiation in an enclosure[J]. Journal of Sound and Vibration2010329(18): 3632-3646.
13 ZHANG H, WEN J, XIAO Y, et al. Sound transmission loss of metamaterial thin plates with periodic subwavelength arrays of shunted piezoelectric patches[J]. Journal of Sound and Vibration2015343: 104-120.
14 AIROLDI L, RUZZENE M. Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos[J]. New Journal of Physics201113(11): 113010.
15 FAN Y, COLLET M, ICHCHOU M, et al. A wave-based design of semi-active piezoelectric composites for broadband vibration control[J]. Smart Materials and Structures201625(5): 055032.
16 WANG G, WANG J W, CHEN S B, et al. Vibration attenuations induced by periodic arrays of piezoelectric patches connected by enhanced resonant shunting circuits[J]. Smart Materials and Structures201120(12): 125019.
17 LI L, JIANG Z, FAN Y, et al. Creating the coupled band gaps in piezoelectric composite plates by interconnected electric impedance[J]. Materials201811(9): E1656.
18 LI X P, CHEN Y Y, HU G K, et al. A self-adaptive metamaterial beam with digitally controlled resonators for subwavelength broadband flexural wave attenuation[J]. Smart Materials and Structures201827(4): 045015.
19 YI K J, MATTEN G, OUISSE M, et al. Programmable metamaterials with digital synthetic impedance circuits for vibration control[J]. Smart Materials and Structures202029(3): 035005.
20 WANG G, CHENG J Q, CHEN J W, et al. Multi-resonant piezoelectric shunting induced by digital controllers for subwavelength elastic wave attenuation in smart metamaterial[J]. Smart Materials and Structures201726(2): 025031.
21 SUGINO C, RUZZENE M, ERTURK A. Design and analysis of piezoelectric metamaterial beams with synthetic impedance shunt circuits[J]. IEEE/ASME Transactions on Mechatronics201823(5): 2144-2155.
22 YI K J, LIU Z Y, ZHU R. Multi-resonant metamaterials based on self-sensing piezoelectric patches and digital circuits for broadband isolation of elastic wave transmission[J]. Smart Materials and Structures202231(1): 015042.
23 YI K J, COLLET M. Broadening low-frequency bandgaps in locally resonant piezoelectric metamaterials by negative capacitance[J]. Journal of Sound and Vibration2021493: 115837.
24 COLLET M, OUISSE M, RUZZENE M, et al. Floquet-bloch decomposition for the computation of dispersion of two-dimensional periodic, damped mechanical systems[J]. International Journal of Solids and Structures201148(20): 2837-2848.
25 COLLET M, OUISSE M, ICHCHOU M N. Structural energy flow optimization through adaptive shunted piezoelectric metacomposites[J]. Journal of Intelligent Material Systems and Structures201223(15): 1661-1677.
文章导航

/