综述

传感器飞机核心关键技术进展与应用

  • 郝帅 ,
  • 马铁林 ,
  • 王一 ,
  • 向锦武 ,
  • 马洪忠 ,
  • 蒋柏峰 ,
  • 曹军
展开
  • 1.北京航空航天大学 航空科学与工程学院,北京 100083
    2.海鹰航空通用装备有限责任公司,北京 100074
    3.北京航空航天大学 无人系统研究院,北京 100083
    4.中国电子科学研究院,北京 100041
    5.南京电子设备研究所,南京 211103
.E-mail:xiangjw@buaa.edu.cn

收稿日期: 2022-02-14

  修回日期: 2022-03-03

  录用日期: 2022-03-14

  网络出版日期: 2022-03-22

基金资助

国家自然科学基金(91216102)

Progress and application of key technologies of SensorCraft

  • Shuai HAO ,
  • Tielin MA ,
  • Yi WANG ,
  • Jinwu XIANG ,
  • Hongzhong MA ,
  • Baifeng JIANG ,
  • Jun CAO
Expand
  • 1.School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China
    2.Hiwing General Aviation Equipment Co. ,Ltd. ,Beijing 100074,China
    3.Research Institute of Unmanned Systems,Beihang University,Beijing 100083,China
    4.China Academy of Electronics and Information Technology,Beijing 100041,China
    5.Nanjing Electronic Equipment Institute,Nanjing 211103,China

Received date: 2022-02-14

  Revised date: 2022-03-03

  Accepted date: 2022-03-14

  Online published: 2022-03-22

Supported by

National Natural Science Foundation of China(91216102)

摘要

传感器飞机是美国空军实验室提出的一种高空长航时预警监视和信息综合飞行器,采用平台载荷一体化技术理念,兼具飞行器和传感器的双重特征。平台与载荷之间多要素耦合,意味着不同于传统情报、监视与侦察(ISR)飞机的总体设计;飞行条件与性能指标为气动设计带来了新挑战;大展弦比柔性机翼的气动弹性问题不仅造成飞行性能恶化,还会导致机翼共形天线电性能的损失。本文总结了传感器飞机的技术特征,从飞行平台和共形天线两方面阐述了美国传感器飞机系统的发展历程,梳理了支撑传感器飞机发展的一体化布局设计、层流减阻、阵风减缓、共形天线设计、形变测量与重构、电性能补偿6项核心关键技术并介绍了相关应用;从飞行能力、隐身能力、感知能力及协同能力4个方面展望了该类飞行器的发展趋势,可为后续新型ISR飞机提供参考。

本文引用格式

郝帅 , 马铁林 , 王一 , 向锦武 , 马洪忠 , 蒋柏峰 , 曹军 . 传感器飞机核心关键技术进展与应用[J]. 航空学报, 2023 , 44(6) : 27034 -027034 . DOI: 10.7527/S1000-6893.2022.27034

Abstract

SensorCraft is an early warning and surveillance and information synthesis aircraft proposed by the Air Force Research Laboratory, with high ceiling and long endurance. It adopts the platform-payload integration technology, with the dual features of the aircraft and sensor. Coupling of multiple elements between platform and payload means that the overall layout design is different from that of the traditional Intelligence, Surveillance and Reconnaissance (ISR) vehicle. Flight conditions and performance indexes bring new challenges to the aerodynamic design. Aeroelastic problem of large aspect ratio flexible wing not only worsens flight performance, but also leads to loss of electromagnetic performance of wing conformal antenna. This paper summarizes the technical characteristics of SensorCraft, expounds the development history of the United States SensorCraft system from two aspects of the flight platform and conformal antenna. From the perspective of technical characteristics, key technologies supporting SensorCraft are sorted out, such as integrated layout design, laminar drag reduction, gust alleviation, conformal antenna design, deformation measurement & reconstruction, and electromagnetic performance compensation. Relevant applications are introduced. The development trend of this aircraft is also discussed in terms of the flight ability, stealth ability, perception ability and coordination ability of the aircraft, so as to provide reference for the new ISR aircraft.

参考文献

1 CORD T J, NEWBERN S. Unmanned air vehicles: new challenges in design[C]∥ 2001 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 2699-2704.
2 HALL J K, CLARK C S. SensorCraft mission simulation study: AFRL-VA-WP-TP-2002-314[R]. Dayton: Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate, 2002.
3 JOHNSON F. Sensor Craft—Tomorrow’s eyes and ears of the warfighter[C]∥ AIAA Modeling and Simulation Technologies Conference and Exhibit. Reston: AIAA, 2001.
4 TILMANN C P. Emerging aerodynamic technologies for high-altitude long-endurance SensorCraft UAVs[C]∥ Proceedings for Aerodynamic Issues of Unmanned Air Vehicles. Dayton: Air Force Research Lab Wright-Patterson AFB OH Air Vehicles Directorate, 2002: 1-24.
5 GENELLO G J, BALDYGO W J, CALLAHAN M J. Modeling and simulation for Sensor Craft multi-mission radar[C]∥ 2001 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 741-748.
6 MALLWOOD B, CANFIELD R, TERZUOLI A. Structurally integrated antennas on a joined-wing aircraft[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
7 CHAMBERS J R. Innovation in flight: Research of the NASA langley research center on revolutionary advanced concepts for aeronautics[M]. Washington, D.C.: NASA, 2007: 1-20.
8 HOPKINS M, TUSS J, LOCKYER A, et al. Smart skin conformal load-bearing antenna and other smart structures developments[C]∥ 38th Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1997.
9 BARTLEY-CHO J, LOCKYER A, ALT K, et al. Development and testing of a conformal load-bearing smart skin antenna structure[C]∥ 40th Structures, Structural Dynamics, and Materials Conference and Exhibit. Reston: AIAA, 1999.
10 SIPUS Z, SKOKIC S, BURUM N. Analysis of conformal stacked-patch arrays: SPC 04-3050[R]. Zagreb: Zagreb University, 2005.
11 SCHWARTZ J, CANFIELD R A, BLAIR M. Aero-structural coupling and sensitivity of a joined-wing SensorCraft[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003: 1606-1613.
12 BANKS D, BERDEN M, BARON B, et al. Structurally integrated X-band array development: RTO-MP-AVT-141[R]. Seattle: Boeing Company, 2006.
13 HENDERSON J, MARTIN C, KUDVA J. Sensitivity of optimized structures to constraints and performance requirements for the SensorCraft ISR platform[C]∥ 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
14 REICH G W, RAVEH D E, ZINK P S. Application of active-aeroelastic-wing technology to a joined-wing SensorCraft[J]. Journal of Aircraft200441(3): 594-602.
15 SULEMAN A. Research and development of a scaled joined-wing flight vehicle: GRANT 05-3076[R]. Lisbon: Instituto Superior Tecnico Lisbon, 2005.
16 JOHNSON K S. Unmanned aircraft systems roadmap 2005-2030: 61280700[R]. Washington, D.C.: Office of the Secretary of Defence (USA), 2005.
17 NANGIA R, PALMER M. Joined wing configuration for high speeds—A first stage aerodynamic study[C]∥ 44th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2006.
18 COOPER J E. Structural design and analysis of an aeroelastic tailoring and passive load alleviation concept for a Sensor Craft: GRANT 05-3006[R]. Manchester: Manchester University, 2007.
19 VIO G, COOPER J. Optimisation of composite SensorCraft structures for gust alleviation[C]∥ 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008.
20 CALLUS P J. Novel concepts for conformal load-bearing antenna structure: DSTO-TR-2096[R]. Victoria: Defence Science and Technology Organisation Victoria (Australia) Air Vehicles DIV, 2008.
21 CAKIROGLU B. Construction and testing of broadband high impedance ground planes (HIGPS) for surface mount antennas: AFIT/GE/ENG/08-02[R]. Dayton: Air Force Inst of Tech Wright-Patterson AFB OH School of Engineering and Management, 2008.
22 CASSEN J, WATERMAN T G. Radome for endfire antenna arrays: US7583238[P]. 2009-09-01.
23 LINDERMAN R. Air Force science & technology issues & opportunities regarding high performance embedded computing[C]∥ 13th Annual Workshop on High Performance Embedded Computing. Lexington: Air Force Research Lab Rome Ny Information Directorate, 2009: 1-40.
24 GAL-OR B. Editorial on future jet technologies[J]. International Journal of Turbo & Jet-Engines201431(4): 197-198.
25 BRONK J. Disruptive trends in long-range precision strike, ISR, and defensive systems[J]. The Nonproliferation Review202027(1-3): 39-47.
26 GUNZINGER M, REHBERG C, COHN J, et al. An air force for an era of great power competition[M]. Wash-ington, D.C.: Center for Strategic and Budgetary As-sessments, 2019: 7-165.
27 BLAIR M B, CANFIELD R. A joined-wing structural weight modeling study[C]∥ 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
28 HUNTEN K, BLAIR M. The application of the MISTC framework to structural design optimization[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
29 BLAIR M. Air vehicle enviroment in C++: A computational design environment for conceptual innovations[J]. Journal of Aerospace Computing, Information, and Communication20107(3): 85-117.
30 RASMUSSEN C C, CANFIELD R A, BLAIR M. Joined-wing Sensor-Craft configuration design[J]. Journal of Aircraft200643(5): 1470-1478.
31 NEIDHOEFER J, RYAN J, LEAHY B, et al. Cooperative multi-disciplinary design of integral load bearing antennas in small UAVs[C]∥ 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
32 张芳, 徐含乐, 任武. 特种太阳能飞机总体参数设计方法研究[J]. 科学技术与工程201212(24): 6245-6251.
  ZHANG F, XU H L, REN W. Research of Special Solar-powered Aircraft Conceptual Parameters design method[J]. Science Technology and Engineering201212(24): 6245-6251 (in Chinese).
33 任武, 周洲, 王正平. 高空长航时无人预警机气动及电磁特性研究[J]. 科学技术与工程201212(4): 848-851, 856.
  REN W, ZHOU Z, WANG Z P. Aerodynamic and electromagnetic characteristics research of high-altitude long-endurance early warning unmanned aerial vehicles[J]. Science Technology and Engineering201212(4): 848-851, 856 (in Chinese).
34 HE C, JIA Y H, MA D L, et al. Integrated optimization approach for aerodynamic, structural, and embedded antenna design of joined-wing SensorCraft[J]. IEEE Access20208: 138999-139012.
35 CALLUS P J. Conformal load-bearing antenna structure for Australian Defence Force aircraft: DSTO-TR-1963[R]. Melboume: Defence Science and Technology Organisation Victoria (Australia) Air Vehicles DIV, 2007.
36 NANGIA R K. Configuration studies supporting design/assessment of Sensor Craft: SPC 01-4087[R]. Bristol: Nangia Aero Research Associates Bristol, 2003.
37 ROBERTS JR R W. Sensor-Craft analytical certification[D]. Dayton: Air Force Inst of Tech Wright-Patterson AFB OH School of Engineering and Management, 2003: 22-36.
38 MARISARLA S, NARAYANAN V, GHIA U, et al. Prediction of structural behavior of joined-wing configuration of high altitude long endurance (HALE) aircraft based on the sensor-craft model[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
39 BLAIR M, CANFIELD R A, ROBERTS R W. Joined-wing aeroelastic design with geometric nonlinearity[J]. Journal of Aircraft200542(4): 832-848.
40 ROBINSON J. Structural testing and analysis of a joined wing technology demonstrator: AFRL-VA-WP-TR-2004-3048[R]. Dayton: Defense Technical Information Center, 2004.
41 BLAIR M, ROBINSON J, MCCLELLAND W A, et al. A joined-wing flight experiment: AFRL-RB-WP-TR-2008-3101[R]. Dayton: Defense Technical Information Center, 2008.
42 ADAMS B J. Structural stability of a joined-wing SensorCraft[D]. Dayton: Air Force Institute of Technology, 2007: 22-23.
43 LUCIA D. The SensorCraft configurations: A non-linear AeroServoElastic challenge for aviation[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
44 COOPER J E. Experimental validation of an aeroelastically scaled SensorCraft model: GRANT 07-3111[R]. Liverpool: Liverpool University, 2009.
45 AARONS T, CANFIELD R, WOOLSEY C, et al. Design for flight test of a scaled joined wing SensorCraft[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
46 RICHARDS J, GARNAND-ROYO J S, SULEMAN A, et al. Design and evaluation of aeroelastically tuned joined-wing SensorCraft flight test article[C]∥ 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
47 VARTIO E, SHIMKO A, TILMANN C, et al. Structural modal control and gust load alleviation for a SensorCraft concept[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
48 LOVE M, ZINK P, WIESELMANN P, et al. Body freedom flutter of high aspect ratio flying wings[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
49 SILVA W, VARTIO E, SHIMKO A, et al. Development of aeroservoelastic analytical models and gust load alleviation control laws of a SensorCraft wind-tunnel model using measured data[C]∥ 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006.
50 VARTIO E, SHAW E, VETTER T. Gust load alleviation flight control system design for a SensorCraft vehicle[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008.
51 MANGALAM A, DAVIS M. Ground/flight correlation of aerodynamic loads with structural response[C]∥ 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2009.
52 GUO S J, SENSBURG O. Passive gust alleviation for a flying wing aircraft: AFRL-AFOSR-UK-TR-2013-0008[R]. Cranfield: Cranfield University, 2013.
53 GUO S J, SENSBURG O. Wind tunnel model and test to evaluate the effectiveness of a passive gust alleviation device for a flying wing aircraft: AFRL-AFOSR-UK-TR-2016-0025[R]. Cranfield: Cranfield University, 2016.
54 SUH P M, CHIN A W, MAVRIS D N. Virtual deformation control of the X-56A model with simulated fiber optic sensors: DFRC-E-DAA-TN10283[R]. Washington, D.C.: NASA, 2014.
55 WARWICK G. NASA’s X-56 Demos Flutter Suppression Flexible Wing[J]. Aviation Week & Space Technology201822: 180.
56 OUELLETTE J. Active structural control for aircraft efficiency with the X-56A aircraft: AFRC-E-DAA-TN27228. Washington, D.C.: NASA, 2015.
57 YERLY E T, DELUCA A, JOO J J. Roll control evaluation of the X-56A flying wing aircraft using active camber control compared to conventional ailerons using vortex lattice theory[C]∥ 34th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2016.
58 GRAUER J A, BOUCHER M. Aeroelastic modeling of X-56A stiff-wing configuration flight test data[C]∥ AIAA Atmospheric Flight Mechanics Conference. Reston: AIAA, 2017.
59 CESNIK C, SU W H. Nonlinear aeroelastic modeling and analysis of fully flexible aircraft[C]∥ 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2005.
60 CRAVEY R L, VEDELER E, GOINS L, et al. Structurally integrated antenna concepts for HALE UAVs: TM-2006-214513[R]. Reston: AIAA, 2006.
61 孙俊磊, 王和平, 周洲, 等. 基于天线安装的菱形翼无人机翼型优化设计[J]. 航空学报201738(11): 121072.
  SUN J L, WANG H P, ZHOU Z, et al. Aerodynamic optimization design of diamond-wing configuration UAV airfoil based on radar antenna installation[J]. Acta Aeronautica et Astronautica Sinica201738(11): 121072 (in Chinese).
62 孙俊磊. 菱形翼布局飞机总体气动外形的研究与应用[D]. 西安: 西北工业大学, 2018: 207-209.
  SUN J L. Research and application of the overall aerodynamic shape of the diamond joined-wing configuration UAV[D]. Xi’an: Northwestern Polytechnical University, 2018: 207-209 (in Chinese).
63 许进林. 传感器无人机的机翼颤振抑制研究[D]. 南京: 南京航空航天大学, 2010: 72-74.
  XU J L. Research of the airfoil’s flutter suppression for sensor unmanned aerial vehicle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010: 72-74 (in Chinese).
64 晨枫. 预警机和无人机之双剑合璧——谈谈有人与无人预警机的各自角色[J]. 航空知识2022(9): 3.
  CHEN F. Combination of AWACS and UAVs—On the respective roles of manned and unmanned AWACS[J]. Aerospace Knowledge2022(9): 3 (in Chinese).
65 NANGIA R. Towards designing novel high altitude joined-wing sensor-craft (HALE-UAV)[C]∥ AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003.
66 NANGIA R, PALMER M, TILMANN C. Unconventional high aspect ratio joined-wing aircraft with aft- and forward-swept wing-tips[C]∥ 41st Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2003.
67 NANGIA R, PALMER M, TILMANN C. Unconventional high aspect ratio joined-wing aircraft incorporating laminar flow[C]∥ 21st AIAA Applied Aerodynamics Conference. Reston: AIAA, 2003.
68 NAMGOONG H, CROSSLEY W A, LYRINTZIS A S. Aerodynamic optimization of a morphing airfoil using energy as an objective[J]. AIAA Journal200745(9): 2113-2124.
69 NAMGOONG H, CROSSLEY W A, LYRINTZIS A S. Morphing airfoil design for minimum drag and actuation energy including aerodynamic work[J]. Journal of Aircraft201249(4): 981-990.
70 DRAKE A, SOLOMON W. Flight testing of a 30-degree sweep laminar flow wing for a high-altitude long-endurance aircraft[C]∥ 28th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2010.
71 SMITH B, GLEZER A, SMITH B, et al. Vectoring and small-scale motions effected in free shear flows using synthetic jet actuators[C]∥ 35th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1997.
72 YOU D. Active control of flow separation over an airfoil using synthetic jets[J]. Journal of Fluids and Structures200824(8): 1349-1357.
73 徐国亮, 符松. 可压缩横流失稳及其控制[J]. 力学进展201242(3): 262-273.
  XU G L, FU S. The instability and control of compressible cross flows[J]. Advances in Mechanics201242(3): 262-273 (in Chinese).
74 吴光辉, 陈迎春. 大型客机减阻机理及方法研究[M]. 上海: 上海交通大学出版社, 2018: 397-409.
  WU G H, CHEN Y C. Investigation on the principles and methods of drag reduction for civil aircraft[M]. Shanghai: Shanghai Jiao Tong University Press, 2018: 397-409 (in Chinese).
75 CARPENTER A, SARIC W, REED H. Laminar flow control on a swept wing with distributed roughness[C]∥ 26th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2008.
76 REICH G W, BOWMAN J C, SANDERS B. Large-area aerodynamic control for high-altitude long-endurance sensor platforms[J]. Journal of Aircraft200542(1): 237-244.
77 YOUNGREN H. Multi-point design and optimization of an natural laminar flow airfoil for a mission adaptive compliant wing[C]∥ 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
78 SMALLWOOD B P, TERZUOLI A J, CANFIELD R A. Structurally integrated antennas for remote sensing[C]∥ 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings. Piscataway: IEEE Press, 2003: 4252-4254.
79 BURRIS P, DEMPSTER J. Flight testing structural performance of the LAMS flight control system[C]∥ 2nd Simulation and Support Conference. Reston: AIAA, 1968.
80 PAYNE B W. Designing a load alleviation system for a modern civil aircraft[C]∥ 15th Congress of the International Council of Aeronautical Sciences. London: ICAS, 1986: 283-291.
81 YAGIL L, RAVEH D E, IDAN M. Elastic deformations control of highly flexible aircraft in trimmed flight and gust encounter[C]∥ 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017.
82 FONTE F, TOFFOL F, RICCI S. Design of a wing tip device for active maneuver and gust load alleviation[C]∥ 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2018.
83 CASTRICHINI A, SIDDARAMAIAH V H, CALDERON D E, et al. Nonlinear folding wing tips for gust loads alleviation[C]∥ 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016.
84 Scott R C, Castelluccio M A, Coulson D A, et al. Aeroservoelastic wind-tunnel tests of a free-flying, joined-wing SensorCraft model for gust load alleviation[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
85 SCOTT M, ENKE A, FLANAGAN J. SensorCraft free-flying aeroservoelastic model: Design and fabrication[C]∥ 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 2011.
86 杨阳. 大展弦比柔性飞机阵风减缓及飞行验证[D]. 北京: 北京航空航天大学, 2020: 69-74.
  YANG Y. Gust alleviation and flight test validation of high-aspect-ratio flexible aircraft[D]. Beijing: Beihang University, 2020: 69-74 (in Chinese).
87 ROESCH P, HARLAN R. A passive gust alleviation system for light aircraft[C]∥ Mechanics and Control of Flight Conference. Reston: AIAA, 1974.
88 PERRON S G, DRELA M. Passive gust load alleviation through bend-twist coupling of composite beams on typical commercial airplane wings[C]∥ 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
89 COOPER J, MILLER S, SENSBURG O, et al. Optimization of a scaled SensorCraft model with passive gust alleviation[C]∥ 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008.
90 COOPER J E, CHEKKAL I, CHEUNG R C M, et al. Design of a morphing wingtip[J]. Journal of Aircraft201552(5): 1394-1403.
91 李道春, 向锦武, 张志飞, 等. 一种主动和被动相结合的固定翼飞机阵风减缓的控制方法: CN108516101B[P]. 2020-02-14.
  LI D C, XIANG J W, ZHANG Z F, et al. Active and passive combined fixed-wing aircraft gust alleviation control method: CN108516101B[P]. 2020-02-14 (in Chinese).
92 RIZK M S A S, MORRIS G, CLIFTON M P. Projected aperture synthesis method for the design of conformal array antennas[C]∥ 4th International Conference on Antennas and Propagation (ICAP 85). Piscataway: IEEE Press, 1985: 48-52.
93 BUCCI O M, D’ELIA G, MAZZARELLA G, et al. Antenna pattern synthesis: A new general approach[J]. Proceedings of the IEEE199482(3): 358-371.
94 SUREAU J C, KEEPING K. Sidelobe control in cylindrical arrays[J]. IEEE Transactions on Antennas and Propagation198230(5): 1027-1031.
95 GREDA L A, KOENEN C, BASTA N, et al. SEQAR: An efficient MATLAB tool for design and analysis of conformal antenna arrays [EM programmer’s notebook][J]. IEEE Antennas and Propagation Magazine201456(4): 178-187.
96 HU W Q, WANG X S, LI Y Z, et al. Synthesis of conformal arrays with matched dual-polarized patterns[J]. IEEE Antennas and Wireless Propagation Letters201615: 1341-1344.
97 BUTTAZZONI G, VESCOVO R. Deterministic and stochastic approach to the synthesis of conformal arrays for SAR applications[C]∥ 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA). Piscataway: IEEE Press, 2013: 520-523.
98 FERREIRA J A, ARES F. Pattern synthesis of conformal arrays by the simulated annealing technique[J]. Electronics Letters199733(14): 1187-1189.
99 赵菲. 共形相控阵天线分析综合技术与实验研究[D]. 长沙: 国防科学技术大学, 2012: 161-170.
  ZHAO F. Analysis and synthesis study of conformal phased antenna array and experiment[D]. Changsha: National University of Defense Technology, 2012: 161-170 (in Chinese).
100 刘燕. 入侵杂草优化算法在阵列天线综合中的应用[D]. 西安: 西安电子科技大学, 2015: 90-97.
  LIU Y. Invasive weed optimization algorithm for the synthesis of antenna arrays[D]. Xi’an: Xidian University, 2015: 90-97 (in Chinese).
101 TUSS J, LOCKYER A, ALT K, et al. Conformal loadbearing antenna structure[C]∥ 37th Structure, Structural Dynamics and Materials Conference. Reston: AIAA, 1996.
102 LOCKYER A J, ALT K H, KINSLOW R W, et al. Development of a structurally integrated conformal load-bearing multifunction antenna: Overview of the Air Force Smart Skin Structures Technology Demonstration Program[C]∥ 1996 Symposium on Smart Structures and Materials. San Diego: International Society for Optics and Photonics, 19962722: 55-64.
103 LOCKYER A J, ALT K H, COUGHLIN D P, et al. Design and development of a conformal load-bearing smart skin antenna: Overview of the AFRL Smart Skin Structures Technology Demonstration (S3TD)[J]. Proceedings of SPIE—The International Society for Optical Engineering19993674: 410-424.
104 ALT K H, LOCKYER A J, COUGHLIN D P, et al. Overview of the DoD’s rf multifunction structural aperture (MUSTRAP) program[J]. Proceedings of SPIE—The International Society for Optical Engineering20014334: 137-146.
105 DOUGLAS B. Conformal consensus[J]. Aviation Week & Space Technology2006165(17): 51.
106 BERDEN M J, MCCARVILLE D A. Structurally integrated X-band antenna large scale component wing test[C]∥ 2007 International Symposium Proceedings of the Society for the Advancement of Material and Process Engineering. Covina: SAMPE, 2007: 1-15.
107 URCIA M, BANKS D. Structurally integrated phased arrays[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-8.
108 KNOTT P. Antenna design and beamforming for a conformal antenna array demonstrator[C]∥ 2006 IEEE Aerospace Conference. Piscataway: IEEE Press, 2006: 9109921.
109 JOSEFSSON L, PERSSON P. Conformal array antenna theory and design[M]. New York: Wiley, 2006: 1-15.
110 ALBERTSON N J, CANFIELD R A. Electromagnetic modeling of large phased arrays of structurally embedded waveguides[C]∥ 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2017.
111 SCHIPPERS H, VERPOORTE J. Overview and main achievements of the ACASIAS project[C]∥ Schippers 2020 Overview AM. Marknesse: NLR, 2020: 1-2.
112 BAEK S M, LIM S J, KO M G, et al. Structural design, fabrication and static testing of smart composite skin structure: Conformal load-bearing SATCOM array antenna structure (CLSAAS)[J]. International Journal of Aeronautical and Space Sciences202021(1): 50-62.
113 ZHOU J Z, LI H T, KANG L, et al. Design, fabrication, and testing of active skin antenna with 3D printing array framework[J]. International Journal of Antennas and Propagation2017(4): 7516323.
114 PENG J J, QU S W, XIA M Y, et al. Wide-scanning conformal phased array antenna for UAV radar based on polyimide film[J]. IEEE Antennas and Wireless Propagation Letters202019(9): 1581-1585.
115 HE Q Q, DING S, XING C, et al. Research on structurally integrated phased array for wireless communications[J]. IEEE Access8: 52359-52369.
116 BAEK S M, KO M G, KIM M S, et al. Structural design of conformal load-bearing array antenna structure (CLAAS)[J]. Advanced Composite Materials201726(S1): 29-42.
117 潘兴琳. 基于光纤光栅的结构变形测量系统研究[D]. 西安: 西安电子科技大学, 2018: 1-2.
  PAN X L. Development of deformation measurement system based on fiber bragg grating[D]. Xi’an: Xidian University, 2018: 1-2 (in Chinese).
118 BARTLEY-CHO J, WANG D, KUDVA J. Shape estimation of deforming structures[C]∥ 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001.
119 JIANG G W, FU S H, CHAO Z C, et al. Pose-relay videometrics based ship deformation measurement system and sea trials[J]. Chinese Science Bulletin201156(1): 113-118.
120 DERKEVORKIAN A, MASRI S F, ALVARENGA J, et al. Strain-based deformation shape-estimation algorithm for control and monitoring applications[J]. AIAA Journal201351(9): 2231-2240.
121 DEMOULIN Q, LEFEBVRE-ALBARET F, BASARAB A, et al. A new flexible photogrammetry instrumentation for estimating wing deformation in Airbus[C]∥ The European Test and Telemetry Conference (ETTC2020). Nuremberg: AMA Service GmbH, 2020: 148-156.
122 SCHIPPERS H, VAN TONGEREN J H, KNOTT P, et al. Vibrating antennas and compensation techniques research in NATO/RTO/SET 087/RTG 50[C]∥ 2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-13.
123 VAN TONGEREN J H, VAN ES J J, SCHIPPERS H, et al. Antenna arrays for in-flight measurement of deformed shapes[C]∥ Proceedings of ISMA 2014. Leuven: ISMA, 2014: 1135-1147.
124 PETER W M. A new twist in flight research: The F-18 active aeroelastic wing project[M]. Washington, D.C.: NASA, 2013: 35-38.
125 裴晓增, 娄小平, 孙广开, 等. 浮空器柔性复合蒙皮形变光纤光栅传感实验研究[J]. 光学技术202046(1): 76-82.
  PEI X Z, LOU X P, SUN G K, et al. Experimental study on fiber Bragg grating sensing of flexible composite skin-shaped aerostat[J]. Optical Technique202046(1): 76-82 (in Chinese).
126 MILLER E. Aerostructures research at NASA Armstrong flight research center: DFRC-E-DAA-TN28392[R]. Washington, D.C.: NASA, 2015.
127 CHIN A W, TRUONG S, SPIVEY N. X-56A structural dynamics ground testing overview and lessons learned[C]∥ AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
128 SHIN H S, CASTANO L M, HUMBERT J S, et al. Sensing skin for detecting wing deformation with embedded soft strain sensors[C]∥ 2016 IEEE Sensors. Piscataway: IEEE Press, 2016: 1-3.
129 FOSS G C, HAUGSE E D. Using modal test results to develop strain to displacement transformations[C]∥ Proceedings of SPIE—The International Society for Optical Engineering. Bellingham: SPIE, 1995: 112-115.
130 南荣昌, 周金柱, 唐宝富, 等. 机翼蒙皮天线的形变重构方法和实验[J]. 电子机械工程202036(5): 1-6, 54.
  NAN R C, ZHOU J Z, TANG B F, et al. Deformation reconstruction method and experiment of wing skin antenna[J]. Electro-Mechanical Engineering202036(5): 1-6, 54 (in Chinese).
131 KO W, RICHARDS W, TRAN V T. Displacement theories for in-flight deformed shape predictions of aerospace structures: NASA/TP-2007-214612[R]. Washington, D.C.: NASA, 2007.
132 KO W, FLEISCHER V. Methods for in-flight wing shape predictions of highly flexible unmanned aerial vehicles: Formulation of Ko displacement theory: NASA/TP-2010-214656[R]. Washington, D.C.: NASA, 2010.
133 PAK C G. Wing shape sensing from measured strain[J]. AIAA Journal201654(3): 1068-1077.
134 TESSLER A, SPANGLER J L. A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells[J]. Computer Methods in Applied Mechanics and Engineering2005194(2-5): 327-339.
135 PAPA U, RUSSO S, LAMBOGLIA A, et al. Health structure monitoring for the design of an innovative UAS fixed wing through inverse finite element method (iFEM)[J]. Aerospace Science and Technology201769: 439-448.
136 张科, 袁慎芳, 任元强, 等. 基于逆向有限元法的变形机翼鱼骨的变形重构[J]. 航空学报202041(8): 223617.
  ZHANG K, YUAN S F, REN Y Q, et al. Shape reconstruction of self-adaptive morphing wings’ fishbone based on inverse finite element method[J]. Acta Aeronautica et Astronautica Sinica202041(8): 223617 (in Chinese).
137 GLASER R, CACCESE V, SHAHINPOOR M. Shape monitoring of a beam structure from measured strain or curvature[J]. Experimental Mechanics201252(6): 591-606.
138 何凯. 柔性结构分布式光纤形态感知与三维重构技术研究[D]. 南京: 南京航空航天大学, 2018: 72-74.
  HE K. Research on morphology perception and 3D reconstruction of flexible structure based on distributed optical fiber sensor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 72-74 (in Chinese).
139 MATHIA K, PRIDDY K. Real-time geometrical approximation of flexible structures using neural networks[C]∥ 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century. Piscataway: IEEE Press, 1995: 2099-2102.
140 FENG S Y, BAO H, PAN X L. A fuzzy network method for the airfoil long baseline antenna deformation measurement[C]∥ Fifth Asia International Symposium on Mechatronics (AISM 2015). Hertfordshire: Institution of Engineering and Technology, 2015: 1-6.
141 ALGERMISSEN S, MONNER H P, KNOTT P, et al. Closed-loop subspace identification for vibration control of structure integrated antenna arrays[C]∥ 2011 Aerospace Conference. Piscataway: IEEE Press, 2011: 1-12.
142 胡乃岗, 保宏, 连培园, 等. 大型相控阵天线结构与调整机构一体化设计[J]. 机械工程学报201551(1): 196-202.
  HU N G, BAO H, LIAN P Y, et al. Synthetic design of structure and adjustment mechanism of large phased array antennas[J]. Journal of Mechanical Engineering201551(1): 196-202 (in Chinese).
143 SCHIPPERS H, VAN TONGEREN J H, VOS G. Development of smart antennas on vibrating structures of aerospace platforms of conformal antennas on aircraft structures[C]∥ Multifunctional Structures/Integration of Sensors and Antennas. Piscataway: IEEE Press, 2006: 2-5.
144 KNOTT P. Deformation and vibration of conformal antenna arrays and compensation techniques: RTO-MP-AVT-141[R]. Waterberg: Fgan-Fhr Research Inst for High Frequency Physics and Radar Techniques Wachtberg, 2006.
145 TSAO J. Adaptive phase compensation for distorted phased array by minimum sidelobe response criteria[C]∥International Symposium on Antennas and Propagation Society, Merging Technologies for the 90’s. Piscataway: IEEE Press, 1990: 1466-1469.
146 STEYSKAL M, MAILLOUX R J. Generalization of a phased array error correction method[C]∥ IEEE Antennas and Propagation Society International Symposium. Piscataway: IEEE Press, 1996: 506-509.
147 刘双荣. 面向服役环境的有源相控阵天线结构补偿方法研究[D]. 西安: 西安电子科技大学, 2019: 83-87.
  LIU S R. The service-environment-oriented mechanical and structural compensation of active phased array antenna(APAA)[D]. Xi’an: Xidian University, 2019: 83-87 (in Chinese).
文章导航

/