临近空间高速飞行器数值模拟技术专栏

高超声速飞行器前缘主动冷却影响因素

  • 罗世彬 ,
  • 庙智超 ,
  • 宋佳文
展开
  • 中南大学 航空航天学院, 长沙 410083

收稿日期: 2022-02-06

  修回日期: 2022-03-07

  网络出版日期: 2022-03-22

基金资助

翼型、叶栅空气动力学重点实验室基金(614220121020114);湖南省重点研发计划(2021GK2011)

Influencing factors of active cooling at leading edge of hypersonic vehicles

  • LUO Shibin ,
  • MIAO Zhichao ,
  • SONG Jiawen
Expand
  • School of Aeronautics and Astronautics, Central South University, Changsha 410083, China

Received date: 2022-02-06

  Revised date: 2022-03-07

  Online published: 2022-03-22

Supported by

Foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research(614220121020114); Key R&D Projects of Hunan Province (2021GK2011)

摘要

主动冷却技术是目前高超声速飞行器发展的重点方向,对不同的主动冷却方式进行组合可实现优势互补,能为承受热流密度极高的飞行器前缘提供有效的热防护。以高超声速飞行器前缘气膜-发散组合冷却结构为研究对象,建立CFD数值计算模型,研究来流攻角为0°、4°和12°时对组合冷却效果的影响,对不同前缘上楔角构型的组合冷却效果进行分析。结果表明,攻角的出现使前缘模型上下半段的温差增大,上下壁面的温差最高可达639.2 K,攻角的改变通过影响外壁面压力的分布来影响结构中冷却剂的流量分配。增大前缘上楔角会使冷却剂向多孔介质下游输运的距离减小,外壁面温度与上楔角之间呈现近似线性增长的趋势。

本文引用格式

罗世彬 , 庙智超 , 宋佳文 . 高超声速飞行器前缘主动冷却影响因素[J]. 航空学报, 2022 , 43(12) : 627023 -627023 . DOI: 10.7527/S1000-6893.2022.27023

Abstract

The active cooling technology is the key development direction of hypersonic vehicles, and the combination of different active cooling technologies can achieve complementary advantages and provide effective thermal protection for the leading edge of vehicles with high heat flux. This study examines the film-transpiration combined cooling structure on the leading edge of hypersonic vehicles. The CFD numerical calculation model is established to study the influence of angles of attack of 0°, 4°, and 12° on the combined cooling effect, and the combined cooling effect of configurations with different upper wedge angles on the leading edge is analyzed. The results show that the angle of attack increases the temperature difference between the upper and lower halves of the leading edge model. The maximum temperature difference between the upper and lower walls is 639.2 K. The change in the angle of attack affects the flow distribution of the coolant in the structure by influencing the distribution of outside wall pressure. Increasing the upper wedge angle of the leading edge will reduce the distance of the coolant to the downstream of the porous medium. There is an approximate linear growth trend of the outside wall temperature with the increase of the upper wedge angle.

参考文献

[1] 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望[J]. 宇航学报, 2010, 31(5):1259-1265. HUANG W, LUO S B, WANG Z G. Key techniques and prospect of near-space hypersonic vehicle[J]. Journal of Astronautics, 2010, 31(5):1259-1265(in Chinese).
[2] 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12):023716. HUANG H Y, SU L J, LEI C S, et al. Reusable thermal protective materials:application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):023716(in Chinese).
[3] 杨雷, 张柏楠, 郭斌, 等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713(in Chinese).
[4] 左光, 艾邦成. 先进空间运输系统气动设计综述[J]. 航空学报, 2021, 42(2):624077. ZUO G, AI B C. Aerodynamic design of advanced space transportation system:review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):624077(in Chinese).
[5] 鲁宇, 蔡巧言, 王飞. 临近空间与重复使用技术研究[J]. 导弹与航天运载技术, 2018(3):1-9. LU Y, CAI Q Y, WANG F. Near space and reusable technology[J]. Missiles and Space Vehicles, 2018(3):1-9(in Chinese).
[6] 苟建军, 胡嘉欣, 常越, 等. 高超声速飞行器热管理关键技术及研发进展[J]. 科技导报, 2020, 38(12):103-108. GOU J J, HU J X, CHANG Y, et al. Research progress of thermal management technologies for hypersonic flight vehicles[J]. Science & Technology Review, 2020, 38(12):103-108(in Chinese).
[7] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10):1929-1953.
[8] 向树红, 张敏捷, 童靖宇, 等. 高超声速飞行器主动式气膜冷却防热技术研究[J]. 装备环境工程, 2015, 12(3):1-7. XIANG S H, ZHANG M J, TONG J Y, et al. Research on active film cooling and heat-proof scheme for hypersonic vehicles[J]. Equipment Environmental Engineering, 2015, 12(3):1-7(in Chinese).
[9] 李左飙, 温风波, 唐晓雷, 等. 基于深度学习的单排孔气膜冷却性能预测[J]. 航空学报, 2021, 42(4):524331. LI Z B, WEN F B, TANG X L, et al. Prediction of single-row hole film cooling performance based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524331(in Chinese).
[10] SAHOO N, KULKARNI V, SARAVANAN S, et al. Film cooling effectiveness on a large angle blunt cone flying at hypersonic speed[J]. Physics of Fluids, 2005, 17(3):036102.
[11] DING R, WANG J H, HE F, et al. Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge[J]. Applied Thermal Engineering, 2020, 169:114949.
[12] 沈斌贤, 曾磊, 刘骁, 等. 高超声速飞行器主动质量引射热防护技术研究进展[J/OL]. 空气动力学学报,(2021-11-20)[2022-01-29]. http://kns.cnki.net/kcms/detail/51.1192.TK.20211118.1453.003.html. SHEN B X, ZENG L, LIU X, et al. Research progress of thermal protection technique by activemass injection for hypersonic vehicle[J/OL]. Acta Aerodynamica Sinica, (2021-11-20)[2022-01-29]. http://kns.cnki.net/kcms/detail/51.1192.TK.20211118.1453.003.html (in Chinese).
[13] 吴亚东, 朱广生, 蒋平, 等. 先进的热防护方法及在飞行器的应用前景初探[J]. 宇航总体技术, 2017, 1(1):60-65. WU Y D, ZHU G S, JIANG P, et al. Advanced thermal protection methods and applications in future vehicles[J]. Astronautical Systems Engineering Technology, 2017, 1(1):60-65(in Chinese).
[14] JIANG P X, HUANG G, ZHU Y H, et al. Experimental investigation of combined transpiration and film cooling for sintered metal porous struts[J]. International Journal of Heat and Mass Transfer, 2017, 108:232-243.
[15] HUANG G, ZHU Y H, LIAO Z Y, et al. Experimental study on combined cooling method for porous struts in supersonic flow[J]. Journal of Heat Transfer, 2018, 140(2):02201.
[16] ZHAO L J, LIN J, WANG J H, et al. An experimental investigation on transpiration cooling for supersonic vehicle nose cone using porous material[J]. Applied Mechanics and Materials, 2014, 541-542:690-694.
[17] ZHAO L J, WANG J H, MA J, et al. An experimental investigation on transpiration cooling under supersonic condition using a nose cone model[J]. International Journal of Thermal Sciences, 2014, 84:207-213.
[18] 林佳. 气动热及发散冷却研究[D]. 合肥:中国科学技术大学, 2014:90. LIN J. Study of aero-thermodynamics and transpiration cooling[D]. Hefei:University of Science and Technology of China, 2014:90(in Chinese).
[19] DING R, WANG J H, HE F, et al. Numerical investigation on the performances of porous matrix with transpiration and film cooling[J]. Applied Thermal Engineering, 2019, 146:422-431.
[20] 周子鹤, 苏浩, 贺菲, 等. 发散冷却系统冷却能力的数值分析[J]. 航空动力学报, 2021, 36(11):2363-2371. ZHOU Z H, SU H, HE F, et al. Numerical analysis on cooling capacity of transpiration cooling system[J]. Journal of Aerospace Power, 2021, 36(11):2363-2371(in Chinese).
[21] 栾芸, 贺菲, 王建华. 飞行器鼻锥凹腔-发散组合冷却数值模拟[J]. 航空学报, 2021, 42(2):623937. LUAN Y, HE F, WANG J H. Transpiration cooling of nose-cone with forward-facing cavity:numerical simulation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2):623937(in Chinese).
[22] 丁锐. 发散冷却在高超声速飞行器上的应用可行性研究[D]. 合肥:中国科学技术大学, 2020:168. DING R. Investigations on the application feasibility of transpiration cooling on hypersonic vehicles[D]. Hefei:University of Science and Technology of China, 2020:168(in Chinese).
[23] 欧阳小龙. 多孔介质传热局部非热平衡效应的基础问题研究[D]. 北京:清华大学, 2014:147. OUYANG X L. Research on the local thermal non-equilibrium effect for heat transfer in porous media[D]. Beijing:Tsinghua University, 2014:147(in Chinese).
[24] SHEN L, WANG J H, DONG W J, et al. An experimental investigation on transpiration cooling with phase change under supersonic condition[J]. Applied Thermal Engineering, 2016, 105:549-556.
[25] HE F, WU N, RAN F Y, et al. Numerical investigation on the transpiration cooling of three-dimensional hypersonic inlet[J]. Aerospace Science and Technology, 2020, 106:106152.
[26] XIONG Y B, ZHU Y H, JIANG P X. Numerical simulation of transpiration cooling for sintered metal porous strut of the scramjet combustion chamber[J]. Heat Transfer Engineering, 2014, 35(6-8):721-729.
[27] LUO S B, MIAO Z C, LIU J, et al. Effects of coolants of double layer transpiration cooling system in the leading edge of a hypersonic vehicle[J]. Frontiers in Energy Research, 2021, 9:756820.
文章导航

/