论文

空间复杂运动增升结构随动加载技术

  • 张柁 ,
  • 宋鹏飞 ,
  • 尹伟 ,
  • 杜星 ,
  • 任鹏
展开
  • 中国飞机强度研究所 全尺寸飞机结构静力/疲劳航空科技重点实验室, 西安 710065

收稿日期: 2021-07-02

  修回日期: 2022-03-14

  网络出版日期: 2022-03-11

基金资助

国家自然科学基金(51805041)

Follow-up loading technology for lift structure with spatial complex movement

  • ZHANG Tuo ,
  • SONG Pengfei ,
  • YIN Wei ,
  • DU Xing ,
  • REN Peng
Expand
  • Full Scale Aircraft Structural Static/Fatigue Laboratory, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2021-07-02

  Revised date: 2022-03-14

  Online published: 2022-03-11

Supported by

National Natural Science Foundation of China (51805041)

摘要

某工程襟缝翼运动机构疲劳试验采用大后退量、三段式(前襟、主襟、后襟)富勒襟翼结构,翼面运动为平动和转动的空间复合运动形式,具有多段重叠面积大、偏转速率变化大、剖面轨迹差异大等特点,使翼面运动过程中始终垂直于翼面的交变载荷同步精准施加面临巨大挑战。因此,首次研发了一套空间复杂运动增升结构随动加载系统,包括翼面偏转、随动机构及协调加载等多套控制系统,涉及角度、位移、载荷、速度等多个控制参量,通过多系统多参量耦合同步控制技术,实现了翼面偏转自主控制及翼面交变载荷精准施加,保证了翼面加载点作动筒方向、载荷、翼面偏转角度实时协调同步,确保了翼面偏转全过程随动加载。测试结果显示:翼面运动过程载荷动态误差小于3%,此随动加载系统是可行、有效的。

本文引用格式

张柁 , 宋鹏飞 , 尹伟 , 杜星 , 任鹏 . 空间复杂运动增升结构随动加载技术[J]. 航空学报, 2022 , 43(6) : 526044 -526044 . DOI: 10.7527/S1000-6893.2022.26044

Abstract

The fatigue test of the flap and slat movement mechanism of a project adopts a large-retreat three-segment (front flap, main flap, and rear flap) Fowler flap structure. The wing surface movement, as the spatial composite movement consisting of translation and rotation, are characterized by multiple overlapping areas, large changes in deflection rate, and large differences in profile trajectories, making it difficult to simultaneously and accurately apply alternating loads that are always perpendicular to the airfoil during the movement of the airfoil. In this paper, a set of follow-up loading system for the lift structure with spatial complex movement is developed for the first time, including multiple control systems for wing surface deflection, follow-up mechanism and coordinated loading, involving multiple control parameters such as angle, displacement, load, speed, etc. The multi-system and multi-parameter coupling synchronous control technology is used to achieve autonomous control of wing surface deflection and precise application of wing surface alternating loads, ensuring real-time coordination and synchronization of the direction, load, and deflection angle of the actuator cylinder at the loading point of the wing surface. Follow-up loading is thus achieved in the entire process of wing surface deflection. The test results show that the dynamic error of the load during the movement of the airfoil is less than 3%, and the follow-up loading system is feasible and effective.

参考文献

[1] 中国民用航空总局. 近几年来航空器重要事件情况介绍技术报告[R]. 北京:中国民用航空总局航空安全技术中心, 2005. Civil Aviation Administration. Technical report on important aircraft incidents in recent years[R]. Beijing:Aviation Safety Technology Center of Civil Aviation Administration of China, 2005(in Chinese).
[2] 林晔. 基于仿真和试验的飞行器机械产品可靠性分析[D]. 西安:西北工业大学, 2013:10-15. LIN Y. Reliability analysis of aircraft mechanical products based on Simulation and experiment[D]. Xi'an:Northwestern Polytechnical University, 2013:10-15(in Chinese).
[3] WU Y Q, TALKE F. Finite element based head-tape interface simulation including head-tape surface asperity contacts[J]. IEEE Transactions on Magnetics, 1998, 34:1783-1785.
[4] 强宝平. 飞机结构强度地面试验[M]. 北京:航空工业出版社, 2014. QIANG B P. Ground testing for aircraft structure[M]. Beijing:Aeronautical Science and Technology, 2014(in Chinese).
[5] 孙侠生, 董登科. 军用飞机结构耐久性/损伤容限分析和设计指南[M]. 北京:航空工业出版社,2005.30-42 SUN X S,DONG D K. Military aircraft structure durability/damage tolerance analysis and design guidelines[M]. Beijing:Aviation Industry Press, 2005:30-42(in Chinese).
[6] 王凤山.飞机结构强度试验使用指南[M].西安:中国飞机强度研究所, 2007:62-75. WANG F S. Aircraft structure strength test guide[M]. Xi'an:Aircraft Strength Research Institute of China, 2007:62-75.
[7] 中国飞机强度研究所. 航空结构强度技术[M]. 北京:航空工业出版社, 2013:85-94. Aircraft Strength Research Institute of China. Aircraft structure strength technology[M]. Beijing:Aviation Industry Press, 2013:85-94(in Chinese).
[8] 陈博, 陆慧莲. 某型民用运输机主起落架连接区结构静力试验[J]. 民用飞机设计与研究, 2013(3):21-23, 57. CHEN B, LU H L. Static strength test of the main landing gear attachment structure of a type of civil aircraft[J]. Civil Aircraft Design & Research, 2013(3):21-23, 57(in Chinese).
[9] WANG Y Q, COULES H E, TRUMAN C E, et al. Effect of elastic follow-up and ageing on the creep of an austenitic stainless steel[J]. International Journal of Solids and Structures, 2018, 135:219-232.
[10] WU D Q, JING H Y, XU L Y, et al. Theoretical and numerical analysis of creep crack initiation combined with primary and secondary stresses[J]. Theoretical and Applied Fracture Mechanics, 2018, 95:143-154.
[11] BING L, LEI Z, FENG X. Research of weight deduction in full-scale aircraft static strength test[J]. Procedia Engineering, 2015, 99:1448-1453.
[12] 孙中超. 考虑综合因素的飞行器复杂机构可靠性试验研究[D]. 西安:西北工业大学, 2014.58-65 SUN Z C. Research on the reliability test of complex mechanism of aircraft considering multi-factors[D]. Xi'an:Northwestern Polytechnical University, 2014.58-65(in Chinese).
[13] 郑牧,赵春兰,薛伟松.一种复杂襟翼试验精确随动加载系统[J].测控技术,2011,30:173-175. ZHENG M, ZHAO C L, XUE W S. A precise follow-up loading system for complex flap test[J]. Measurement and Control Technology, 2011,30:173-175(in Chinese).
[14] 陈建国. 飞机襟缝翼收放功能试验随动加载研究[J]. 工程与试验, 2015, 55(3):1-4. CHEN J G. Study on tracking-loading for retractable function test of flap and slat of aircraft[J]. Engineering & Test, 2015, 55(3):1-4(in Chinese).
[15] 张柁, 张园, 杨兆林, 等. 基于轨迹模拟的活动翼面随动加载技术及应用[J]. 科学技术与工程, 2019, 19(18):324-328. ZHANG T, ZHANG Y, YANG Z L, et al. Application of moving airfoil following loading technology based on trajectory simulation[J]. Science Technology and Engineering, 2019, 19(18):324-328(in Chinese).
[16] 王全红,藤申科.飞机结构可动翼面试验加载方法[J].结构强度研究, 2007(1):45-51. WANG Q H, TENG S K. Test loading method for movable wing surface of aircraft structure[J]. Structural strength study, 2007(1):45-51(in Chinese).
[17] 庞宝才, 董登科, 弓云昭, 等. 襟缝翼可动翼面的随动加载方法研究[J]. 机械科学与技术, 2014, 33(10):1590-1593. PANG B C, DONG D K, GONG Y Z, et al. Study on tracking loading method of locomotory wing for flap and slat[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(10):1590-1593(in Chinese).
[18] 孙中超, 喻天翔, 李浩远, 等. 一种用于飞机襟翼可靠性试验的载荷随动加载系统:CN104048874B[P]. 2016-06-01. SUN Z C, YU T X, LI H Y, et al. Load follow-up loading system for plane flap reliability test:CN104048874B[P]. 2016-06-01(in Chinese).
[19] 盛锴, 刘卓桢, 张永兴, 等. 基于FlexTest 200加载控制系统中的位控力控模式转换控制加载技术[J]. 现代电子技术, 2013, 36(5):128-130, 134. SHENG K, LIU Z Z, ZHANG Y X, et al. FlexTest 200-based switching loading control technology with actuating control and force control mode in loading control system[J]. Modern Electronics Technique, 2013, 36(5):128-130, 134(in Chinese).
[20] 杜峰. 某飞机襟缝翼疲劳试验系统随动加载技术研究[J]. 工程与试验, 2017, 57(4):68-73. DU F. Study on tracking-loading technology for fatigue test system of flap and slat of aircraft[J]. Engineering & Test, 2017, 57(4):68-73(in Chinese).
[21] YANG X, WANG T, LIANG J, et al. Survey on the novel hybrid aquatic-aerial ampphibious aircraft:Aquatic unmanned aerial vehicle (AquaUAV)[J]. Progress in Aerospace Sciences, 2015, 74:131-151.
[22] TIMOSHENKO S P and BAUD R V.Strength of gear teeth[J].Mechanical Engineering,1926,48(11).
[23] CORNELL R W. Compliance and stress sensitivity of spur gear teeth[J]. Journal of Mechanical Design, 1981, 103(2):447-459.
文章导航

/