固体力学与飞行器总体设计

跨声速风洞试验模型主动减振结构优化设计

  • 曾开春 ,
  • 寇西平 ,
  • 杨兴华 ,
  • 余立 ,
  • 查俊
展开
  • 1. 中国空气动力研究与发展中心 高速空气动力研究所, 绵阳 621000;
    2. 西北工业大学 航空学院, 西安 710072

收稿日期: 2020-11-03

  修回日期: 2020-11-27

  网络出版日期: 2022-03-04

Optimization of active vibration damping structure for transonic wind tunnel test model

  • ZENG Kaichun ,
  • KOU Xiping ,
  • YANG Xinghua ,
  • YU Li ,
  • ZHA Jun
Expand
  • 1. High-speed Aerodynamic Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2020-11-03

  Revised date: 2020-11-27

  Online published: 2022-03-04

摘要

针对跨声速风洞试验模型支撑结构,采用压电作动器嵌入支杆,形成一体化主动减振系统来抑制模型在风洞试验过程中的振动。分析了模型支撑结构在风洞试验过程中的振动特性和主动减振系统的控制原理,建立了压电作动器/风洞模型支撑结构相互耦合的动力学模型。在此基础上,采用模态可控性理论及模态价值理论,给出了主动减振结构控制能力的定量描述方法,构建了能够表征系统各受控模态可控性的优化设计目标函数。最后,针对一个简化的风洞试验模型主动减振结构,建立了动力学解析模型,给出了优化设计问题的数学表达和约束指标,并采用遗传算法进行了优化设计研究。结果表明,采用本文给出的方法对主动减振结构进行优化设计,可以在满足约束指标要求前提下,显著提高压电作动器对系统各受控模态的可控性,进而提高系统的减振控制效果。

本文引用格式

曾开春 , 寇西平 , 杨兴华 , 余立 , 查俊 . 跨声速风洞试验模型主动减振结构优化设计[J]. 航空学报, 2022 , 43(2) : 224944 -224944 . DOI: 10.7527/S1000-6893.2021.24944

Abstract

To solve the vibration problem of the model support system in high-speed wind tunnel tests, we embed piezoelectric stack actuators into the sting to form an integrated active vibration damping structure. The vibration characteristics of the support system during wind tunnel tests and the vibration control mechanism of the active vibration damping system are studied, and the coupled dynamic model of the model support system structure with piezoelectric stack actuators established. Utilizing the modal controllability theory and the modal cost theory, we present the quantitative description method for the control ability of the active vibration damping structure, and construct the optimization design objective function, which can reflect the controllability of the main controlled modes of the system. To improve the control ability of the active vibration damping structure for an idealized model support system, we conduct optimization design using genetic algorithm, with analytical dynamic equations derived and the mathematical expression of the optimization problem and the constraint conditions given. The results show that the optimization design method proposed in this paper can significantly improve the controllability of the active vibration damping structure on the premise of meeting the constraint requirements.

参考文献

[1] CLARENCE Y J,Jr, THOMAS P J,Jr, GLOSS B. National transonic facility model and model support vibration problems[C]//16th Aerodynamic Ground Testing Conference. Reston:AIAA, 1990.
[2] EDWARDS J W. National transonic facility model and tunnel vibrations[J].Journal of Aircraft, 2009, 46(1):46-52.
[3] YOUNG C P, BUEHRLE R D, BALAKRISHNA S, et al. Effects of vibration on inertial wind-tunnel model attitude measurement devices:NASA TM-109083[R]. Washington,D.C.:NASA, 1994.
[4] BUEHRLE R D, YOUNG C P. Modal correction method for dynamically induced errors in wind tunnel model attitude measurements:NASA TM-111560[R]. Washington,D.C.:NASA, 1995.
[5] 叶正寅, 谢飞. 弹性振动对翼型失速迎角附近流场的影响[J].航空学报, 2006, 27(6):1028-1032. YE Z Y, XIE F. The effects of elastic vibration on the flow field near stall-incidence of the airfoil[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1028-1032(in Chinese).
[6] 叶正寅, 解亚军, 武洁. 模型振动对翼型流场和气动性能的影响[J].工程力学, 2009, 26(4):240-245. YE Z Y, XIE Y J, WU J. The effects of wind-tunnel model vibration on flow field and aerodynamics of an airfoil[J].Engineering Mechanics, 2009, 26(4):240-245(in Chinese).
[7] BUEHRLE R D. System dynamic analysis of a wind tunnel model with applications to improve aerodynamic data quality[D]. Cincinnati:University of Cincinnati, 1997:1-16.
[8] 陈卫东, 邵敏强, 杨兴华, 等. 跨声速风洞测力模型主动减振系统的试验研究[J].振动工程学报, 2007, 20(1):91-96. CHEN W D, SHAO M Q, YANG X H, et al. Experimental evaluation of an active vibration control system for wind tunnel aerodynamic models[J].Journal of Vibration Engineering, 2007, 20(1):91-96(in Chinese).
[9] SHEN X, DAI Y K, CHEN M X, et al. Active vibration control of the sting used in wind tunnel:Comparison of three control algorithms[J].Shock and Vibration, 2018, 2018:1905049.
[10] LIU W, MEN D Z, WEN Z Q, et al. An active damping vibration control system for wind tunnel models[J].Chinese Journal of Aeronautics, 2019, 32(9):2109-2120.
[11] 佘重禧, 陈卫东, 邵敏强. 跨声速风洞测力模型的降阶及H减振控制[J].噪声与振动控制, 2014, 34(1):67-71, 81. SHE C X, CHEN W D, SHAO M Q. Model reduction and active vibration suppression of a wind tunnel test model by H control[J].Noise and Vibration Control, 2014, 34(1):67-71, 81(in Chinese).
[12] FEHREN H, GNAUERT U, WIMMEL R, et al. Validation testing with the active damping system in the European Transonic Windtunnel[C]//39th Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2001.
[13] QUEST J. ETW-High quality test performance in cryogenic environment[C]//21 st Aerodynamic Measurement Technology and Ground Testing Conference. Reston:AIAA,2000.
[14] SCHIMANSKI D, QUEST J. Tools and techniques for high Reynolds number testing status and recent improvements at ETW[C]//41 st Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2003.
[15] SCHIMANSKI D, QUEST J. Flight Reynolds number testing at ETW:AIAA-2009-0422[R]. Reston:AIAA, 2009.
[16] BALAKRISHNA S, HOULDEN H, BUTLER D, et al. Development of a wind tunnel active vibration reduction system[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2007.
[17] BALAKRISHNA S, BUTLER D, WHITE E, et al. Active damping of sting vibrations in transonic wind tunnel testing[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2008.
[18] BALAKRISHNA S, BUTLER D, ACHESON M, et al. Design and performance of an active sting damper for the NASA common research model[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011.
[19] RIVERS M B, BALAKRISHNA S. NASA common research model test envelope extension with active sting damping at NTF[C]//32nd AIAA Applied Aerodynamics Conference. Reston:AIAA, 2014.
[20] 余立, 杨兴华, 寇西平, 等. 跨声速风洞模型主动减振系统试验研究[J].南京航空航天大学学报, 2019, 51(4):526-533. YU L, YANG X H, KOU X P, et al. Experiment on active vibration reduction system for transonic wind tunnel model[J].Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(4):526-533(in Chinese).
[21] 宋来收, 夏品奇. 直升机振动主动控制的机身/压电叠层作动器耦合优化法[J].航空学报, 2011, 32(10):1835-1841. SONG L S, XIA P Q. Coupled fuselage/piezoelectric stack actuator optimization method for active vibration control of helicopter[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1835-1841(in Chinese).
[22] HAMDAN A M A, NAYFEH A H. Measures of modal controllability and observability for first-and second-order linear systems[J].Journal of Guidance, Control, and Dynamics, 1989, 12(3):421-428.
[23] SKELTON R, SINGH R, RAMAKRISHNAN J. Component model reduction by component cost analysis[C]//Guidance, Navigation and Control Conference. Reston:AIAA, 1988.
[24] 梁力, 杨智春, 欧阳炎, 等. 垂尾抖振主动控制的压电作动器布局优化[J].航空学报, 2016, 37(10):3035-3043. LIANG L, YANG Z C, OUYANG Y, et al. Optimization of piezoelectric actuator configuration on a vertical tail for buffeting control[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3035-3043(in Chinese).
文章导航

/