Revealing the aerodynamic design principle and the law of comprehensive benefit change of supercritical wings under the action of Hybrid Laminar Flow Control (HLFC) is the key to the development of HLFC supercritical wing design. For a wing with a large aspect ratio and a medium sweep angle, the aerodynamic robust design of the HLFC wing is carried out for the typical design lift coefficients of traditional supercritical wings and Natural Laminar Flow (NLF) supercritical wings, based on the eN-based transition method coupled with the RANS solver. The design lift coefficients of CL=0.53 and CL=0.46 gain drag reduction of 10.06% and 9.6%, respectively. The HLFC wing has a larger applicable design lift coefficient than the NLF supercritical wing. With the decrease of the local Reynolds number, the suction control strength shows a decreasing trend along the span direction, and presents a "concave"-like distribution characteristic in the chord direction. The HLFC comprehensive benefits analysis for short-and medium-range passenger aircraft shows that reducing the weight penalty of the suction control system and increasing the cruise lift-to-drag ratio at a certain suction power cost can significantly improve the efficiency of the HLFC supercritical wing.
[1] GREEN J E. Laminar flow control-back to the future?[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008:3738.
[2] CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the uw-5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3):783-795.
[3] REED H, SARIC W. Transition mechanisms for transport aircraft[C]//38th Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2008.
[4] 朱自强, 鞠胜军, 吴宗成, 等. 层流流动主/被动控制技术[J]. 航空学报, 2016, 37(7):2065-2090. ZHU Z Q, JU S J, WU Z C, et al. Laminar flow active/passive control technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2065-2090(in Chinese).
[5] COLLIER J F. An overview of recent subsonic laminar flow control flight experiments[C]//23rd Fluid Dynamics, Plasma dynamics, and Lasers Conference. Reston:AIAA, 1993.
[6] WAGNER R, MADDALON D, CLARK R. High Reynolds number hybrid laminar flow control (HLFC) flight experiment II, aerodynamic design[M]. 1999:172.
[7] 耿子海, 刘双科, 王勋年, 等. 二维翼型混合层流控制减阻技术试验研究[J]. 实验流体力学, 2010, 24(1):46-50. GENG Z H, LIU S K, WANG X N, et al. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1):46-50(in Chinese).
[8] 王菲, 额日其太, 王强, 等. 基于升华法的后掠翼混合层流控制研究[J]. 实验流体力学, 2010, 24(3):54-58. WANG F, ERIQITAI, WANG Q, et al. Investigation of HLFC on swept wing based on sublimation technique[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3):54-58(in Chinese).
[9] SHI Y Y, CAO T S, YANG T H, et al. Estimation and analysis of hybrid laminar flow control on a transonic experiment[J]. AIAA Journal, 2019, 58(1):118-132.
[10] 王菲, 额日其太, 王强, 等. 后掠翼混合层流控制机制的实验[J]. 航空动力学报, 2010, 25(4):918-924. WANG F, ERIQITAI, WANG Q, et al. Experimental investigation of HLFC mechanism on swept wing[J]. Journal of Aerospace Power, 2010, 25(4):918-924(in Chinese).
[11] JOSLIN R D. Aircraft laminar flow control[J]. Annual Review of Fluid Mechanics, 1998, 30:1-29.
[12] 史亚云, 郭斌, 刘倩, 等. 基于能量观点的混合层流优化设计[J]. 北京航空航天大学学报, 2019, 45(6):1162-1174. SHI Y Y, GUO B, LIU Q, et al. Hybrid laminar flow optimization design from energy view[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6):1162-1174(in Chinese).
[13] YOUNG T M. Investigations into the operational effectiveness of hybrid laminar flow control aircraft[D]. Cranfield:Cranfield University, 2002.
[14] HAN Z H, CHEN J, ZHU Z, et al. Aerodynamic design of transonic natural-laminar-flow (nlf) wing via surrogate-based global optimization[C]//54th AIAA Aerospace Sciences Meeting. Reston:AIAA, 2016.
[15] PRALITS J, HANIFI A. Optimal suction design for HLFC applications[C]//33rd AIAA Fluid Dynamics Conference and Exhibit. Reston:AIAA, 2003.
[16] RISSE K, SCHUELTKE F, STUMPF E, et al. Conceptual wing design methodology for aircraft with hybrid laminar flow control[C]//52nd Aerospace Sciences Meeting. Reston:AIAA, 2014.
[17] 杨体浩, 白俊强, 史亚云, 等. 考虑吸气分布影响的HLFC机翼优化设计[J]. 航空学报, 2017, 38(12):6-20. YANG T H, BAI J Q, SHI Y Y, et al. Optimization design for HLFC wings considering influence of suction distribution[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):6-20(in Chinese).
[18] 杨一雄, 杨体浩, 白俊强, 等. HLFC后掠翼优化设计的若干问题[J]. 航空学报, 2018, 39(1):121448. YANG Y X, YANG T H, BAI J Q, et al. Problems in optimization design of HLFC sweep wing[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):121448(in Chinese).
[19] YANG Y X, BAI J Q, LI L, et al. An inverse design method with aerodynamic design optimization for wing glove with hybrid laminar flow control[J]. Aerospace Science and Technology, 2019, 95:105493.
[20] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986, 20(4):151-160.
[21] 刘瑜, 郭正. 网格变形的一种插值算法[C]//全国计算流体力学会议, 2012:578-584. LIU Y, GUO Z. IDW for mesh deformation[C]//National Computational Fluid Dynamics Conference, 2012:578-584(in Chinese).
[22] 王小平, 曹立明. 遗传算法理论、应用与软件实现[M]. 西安:西安交通大学出版社, 2002:344. WANG X P, CAO L M. Genetic algorithm:theory, application and software implementation[M]. Xi'an:Xi'an Jiaotong University Press, 2002:344(in Chinese).