基于离散伴随的高超声速密切锥乘波体气动优化设计
收稿日期: 2021-11-16
修回日期: 2021-11-30
录用日期: 2022-01-04
网络出版日期: 2022-01-11
基金资助
国家自然科学基金(11972308);陕西省自然科学基金(11802245)
Discretized adjoint based aerodynamic optimization design for hypersonic osculating-cone waverider
Received date: 2021-11-16
Revised date: 2021-11-30
Accepted date: 2022-01-04
Online published: 2022-01-11
Supported by
National Natural Science Foundation of China(11972308);Natural Science Foundation of Shaanxi Province(11802245)
基于定平面形状的密切锥乘波体设计方法能够显著提高传统乘波体的设计灵活性和整体升阻特性。但是该类乘波体在设计时忽略了三维效应、黏性效应以及头部/前缘的钝化效应,在设计工况下仍会出现溢流,升阻比难以达到最优;另外,这类乘波体仍具有传统乘波体在偏离设计条件下气动特性会出现恶化的不足。因此,有必要在考虑黏性的情况下,针对定平面形状的密切锥乘波体开展全机气动优化设计。结合基于全速域通量求解方法和RANS湍流模型的高精度CFD求解器、鲁棒的结构网格变形方法、自由变形参数化方法、离散伴随方法以及序列二次规划算法,实现了基于离散伴随的高超声速飞行器气动优化设计方法。基于上述方法,针对定平面形状的密切锥乘波体开展了单点和多点的三维整机气动优化设计。在400万多块结构网格、600个设计变量以及303个设计约束条件下,所采用的离散伴随优化方法仅花费2 240CPU小时和3 360CPU小时即完成了三维整机单点和多点的优化设计。结果表明,相较于初始构型,单点优化得到的构型在设计状态下的升阻比提升了近5%;多点优化得到的构型可保证在设计点状态升阻特性没有损失的同时,将非设计点的升阻比提升10%以上,进而在一定程度上改善了定平面密切锥乘波体的理论局限性。
刘超宇 , 屈峰 , 孙迪 , 刘传振 , 钱战森 , 白俊强 . 基于离散伴随的高超声速密切锥乘波体气动优化设计[J]. 航空学报, 2023 , 44(4) : 126664 -126664 . DOI: 10.7527/S1000-6893.2022.26664
The design method of osculating-cone waverider based on planform-controllable shape can significantly improve the design flexibility and overall lift-drag characteristics for traditional waveriders. However, because the three-dimensional effect, the viscous effect and the passivation effect of the head/leading edge are ignored in the design of the waverider, overflow still occurs under the design conditions leading to the difficulty in achieving the optimal lift-to-drag ratio. In addition, the lift-drag characteristics will still be poor when the waverider is not in design conditions. In this paper, an aerodynamic shape optimization design method for the hypersonic vehicle based on discretized adjoint is constructed by combining the CFD solvers based on the full-velocity flux solution method and the RANS turbulence model, the robust automatic structured mesh wrapping method, the free form deformation geometry parameterization method, the discretized adjoint method and the sequential quadratic programming algorithm. Through this method, the single point and multi-point three-dimensional aerodynamic optimization designs of the whole aircraft are carried out for the planform-controllable osculating-cone waverider. Under more than 4 million structural grids, 600 design variables and 303 design constraints, the proposed method only takes 2 240 CPU hours and 3 360 CPU hours to achieve the single point and multi-point optimization designs of the waverider. The results show that compared with the initial configuration, the lift-drag ratio of the single point optimization configuration in the design state increased by nearly 5%. The configuration obtained by multipoint optimization can ensure that the lift-drag ratio at off-design states is increased by more than 10% without loss of lift-drag characteristics at design state, which improves the theoretical limitations of the planform-controllable osculating-cone waverider to a certain extent.
1 | 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10): 3023-3034. |
DUAN Y H, FAN Z L, WU W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10): 3023-3034 (in Chinese). | |
2 | 宋赋强, 阎超, 马宝峰, 等. 锥导乘波体构型的气动特性不确定度分析[J]. 航空学报, 2018, 39(2): 121519. |
SONG F Q, YAN C, MA B F, et al. Uncertainty analysis of aerodynamic characteristics for cone-derived waverider configuration[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(2): 121519 (in Chinese). | |
3 | NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528. |
4 | JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1): 56-72. |
5 | SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]∥ Proceedings of the First International Hypersonic Waverider Symposium, 1990:17-19. |
6 | 刘传振, 白鹏, 陈冰雁, 等. 定平面形状乘波体及设计变量影响分析[J]. 宇航学报, 2017, 38(5): 451-458. |
LIU C Z, BAI P, CHEN B Y, et al. Analysis on design variables for planform-controllable waverider[J]. Journal of Astronautics, 2017, 38(5): 451-458 (in Chinese). | |
7 | 刘传振, 白鹏, 王骥飞, 等. 给定前缘线平面形状的密切锥乘波体设计方法[J]. 力学学报, 2019, 51(4): 991-997. |
LIU C Z, BAI P, WANG J F, et al. Osculating-cone waverider design by customizing the planform shape of leading edge[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 991-997 (in Chinese). | |
8 | WANG J F, LIU C Z, BAI P, et al. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151: 504-510. |
9 | 刘传振, 孟旭飞, 刘荣健, 等. 双后掠乘波体高超声速试验与数值分析[J]. 航空学报, 2022, 43(9): 126015. |
LIU C Z, MENG X F, LIU R J, et al. Experimental and numerical investigation of hypersonic performance of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9):126015 (in Chinese). | |
10 | 李珺, 易怀喜, 王逗, 等. 基于投影法的双后掠乘波体气动性能[J]. 航空学报, 2021, 42(12): 124703. |
LI J, YI H X, WANG D, et al. Aerodynamic performance of double swept waverider based on projection method[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124703 (in Chinese). | |
11 | 范月华, 段毅, 周乃桢, 等. 高马赫数层流摩阻数值计算精度[J]. 航空学报, 2021, 42(9): 625737. |
FAN Y H, DUAN Y, ZHOU N Z, et al. Friction numerical calculation precision in high Mach number laminar flow[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625737 (in Chinese). | |
12 | RODI P E. Optimization of bezier curves for high speed leading edge geometries[C]∥ 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2013. |
13 | RODI P E. Integration of optimized leading edge geometries onto waverider configurations[C]∥ 53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015. |
14 | 张锋涛, 崔凯, 杨国伟, 等. 基于神经网络技术的乘波体优化设计[J]. 力学学报, 2009, 41(3): 418-424. |
ZHANG F T, CUI K, YANG G W, et al. Optimization design of waverider based on the artificial neural networks[J]. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(3): 418-424 (in Chinese). | |
15 | 徐佳胜. 基于Kriging代理模型的密切锥乘波体气动外形优化设计[D]. 南京: 南京航空航天大学, 2018. |
XU J S. Aerodynamic shape optimization design of osculating cone waverider based on Kriging surrogate model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
16 | 吴功名. 基于Kriging代理模型的高超声速飞行器气动外形优化[D]. 南京: 南京航空航天大学, 2018. |
WU G M. Aerodynamic shape optimization of hypersonic vehicle based on Kriging surrogate model[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
17 | 夏陈超. 基于CFD的飞行器高保真度气动外形优化设计方法[D]. 杭州: 浙江大学, 2016. |
XIA C C. High-fidelity aerodynamic shape optimization method of aircraft based on computational fluid dynamics[D]. Hangzhou: Zhejiang University, 2016 (in Chinese). | |
18 | 苗萌, 曾鹏, 阎超. 基于替代模型的三维后体尾喷管优化设计[J]. 空气动力学学报, 2013, 31(5): 641-646. |
MIAO M, ZENG P, YAN C. Surrogate-based optimization of 3D afterbody nozzle[J]. Acta Aerodynamica Sinica, 2013, 31(5): 641-646 (in Chinese). | |
19 | 高正红, 王超. 飞行器气动外形设计方法研究与进展[J]. 空气动力学学报, 2017, 35(4): 516-528, 454. |
GAO Z H, WANG C. Aerodynamic shape design methods for aircraft: Status and trends[J]. Acta Aerodynamica Sinica, 2017, 35(4): 516-528, 454 (in Chinese). | |
20 | 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5): 121731. |
HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121731 (in Chinese). | |
21 | KLINE H L, ECONOMON T D, ALONSO J J. Mulit-objective optimization of a hypersonic inlet using generalized outflow boundary conditions in the continuous adjoint method[C]∥ 54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
22 | 高昌, 张小庆, 贺元元, 等. 连续伴随方法在二维高超声速进气道优化中的应用[J]. 空气动力学学报, 2020, 38(1): 21-26. |
GAO C, ZHANG X Q, HE Y Y, et al. Applications of continuous adjoint method in 2D hypersonic inlet optimization[J]. Acta Aerodynamica Sinica, 2020, 38(1): 21-26 (in Chinese). | |
23 | 高昌, 李正洲, 黄江涛, 等. 基于连续伴随方法的高超声速飞行器高精度气动优化[J]. 航空学报, 2021, 42(7): 124490. |
GAO C, LI Z Z, HUANG J T, et al. High-accuracy aerodynamic optimization of hypersonic vehicles based on continuous adjoint[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124490 (in Chinese). | |
24 | 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解梯度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4): 554-562. |
HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 554-562 (in Chinese). | |
25 | DAMM K A, GOLLAN R J, JACOBS P A, et al. Discrete adjoint optimization of a hypersonic inlet[J]. AIAA Journal, 2020, 58(6): 2621-2634. |
26 | 左英桃, 苏伟, 高正红, 等. 基于离散共轭方法的高超声速导弹气动外形优化设计[J]. 计算力学学报, 2012, 29(2): 284-289. |
ZUO Y T, SU W, GAO Z H, et al. Aerodynamic configuration optimization design of hypersonic missile based on discrete adjoint method[J]. Chinese Journal of Computational Mechanics, 2012, 29(2): 284-289 (in Chinese). | |
27 | 宋红超, 李鑫, 季路成. 基于离散型伴随方法的单边膨胀喷管优化设计研究[J]. 工程热物理学报, 2017, 38(9): 1849-1854. |
SONG H C, LI X, JI L C. Research on the optimization of unilateral expansion nozzle based on the discrete adjoint method[J]. Journal of Engineering Thermophysics, 2017, 38(9): 1849-1854 (in Chinese). | |
28 | 胡万林, 于剑, 刘宏康, 等. 叶片式涡流发生器对压缩拐角流动分离的控制[J]. 航空学报, 2018, 39(7): 122049. |
HU W L, YU J, LIU H K, et al. Control of compression ramp flow separation via vane vortex generator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122049 (in Chinese). | |
29 | BLAZEK J. Computational fluid dynamics: Principles and applications[M]. 1st ed. Amsterdam: Elsevier, 2001. |
30 | SAAD Y, SCHULTZ M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869. |
31 | SMITH B F. PETSc (portable, extensible toolkit for scientific computation)[M]∥ PADUA D. Encyclopedia of parallel computing. Boston: Springer, 2011: 1530-1539. |
32 | TORO E. Riemann solvers and numerical methods for fluid dynamics[M]. 3rd ed. Berlin, Heidelberg: Springer-Verlag, 2009. |
33 | QU F, CHEN J J, SUN D, et al. A new all-speed flux scheme for the Euler equations[J]. Computers & Mathematics with Applications, 2019, 77(4): 1216-1231. |
34 | SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]∥ 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. |
35 | 陈颂. 基于梯度的气动外形优化设计方法及应用[D]. 西安: 西北工业大学, 2016. |
CHEN S. Gradient based aerodynamic shape optimization design and applications[D]. Xi'an: Northwestern Polytechnical University, 2016 (in Chinese). | |
36 | GOLDFARB D, TOINT P L. Optimal estimation of Jacobian and Hessian matrices that arise in finite difference calculations[J]. Mathematics of Computation, 1984, 43(167): 69-88. |
37 | 白俊强, 雷锐午, 杨体浩, 等. 基于伴随理论的大型客机气动优化设计研究进展[J]. 航空学报, 2019, 40(1): 522642. |
BAI J Q, LEI R W, YANG T H, et al. Progress of adjoint-based aerodynamic optimization design for large civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522642 (in Chinese). | |
38 | MAJD B A EL, DéSIDéRI J A, DUVIGNEAU R. Multilevel strategies for parametric shape optimization in aerodynamics[J]. European Journal of Computational Mechanics, 2008, 17(1-2): 149-168. |
39 | LAURA U. Inverse distance weighting mesh deformation: a robust and efficient method for unstructured meshes[D]. Delft: Delft University of Technology, 2014. |
40 | LUKE E, COLLINS E, BLADES E. A fast mesh deformation method using explicit interpolation[J]. Journal of Computational Physics, 2012, 231(2): 586-601. |
41 | NOCEDAL J, WRIGHT S J. Numerical optimization[M]. New York: Springer-Verlag, 1999: 526-572. |
42 | 刘济民, 侯志强, 宋贵宝, 等. 前缘钝化对乘波体非设计点性能影响分析[J]. 飞行力学, 2011, 29(1): 21-25. |
LIU J M, HOU Z Q, SONG G B, et al. Performance analysis of waverider with blunt leading edge in off-design regimes[J]. Flight Dynamics, 2011, 29(1): 21-25 (in Chinese). | |
43 | SANTOS W. Bluntness effects on lift-to-drag ratio of leading edges for hypersonic waverider configurations[C]∥ 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2012. |
/
〈 |
|
〉 |